UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

One- and two-dimensional seismic modeling

by

Myung Woong Lee

Open-File Report 78-270

This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards or nomenclature.

This report was written during the time the author worked under consulting contract No. 14-08-0001-14677, for the Branch of Oil and Gas Resources, U.S. Geological Survey, Denver, Colorado, from October 1974 to September 1975.

TABLE OF CONTENTS

	Page
INTRODUCTION	1
ONE-DIMENSIONAL WAVE PROPAGATION. (A) Perfectly Elastic Medium. (1) Source at Free Surface. (2) Source at the m-th Interface. (B) Attenuating Medium. Examples and Discussions. Finite Difference Solution. (A) Perfectly Elastic Medium. (B) Voigt Solid. (C) Linear with Frequency Medium. Examples and Discussions.	4 4 9 11 14 17 23 23 26 28 29
TWO-DIMENSIONAL WAVE PROPAGATION	37 38 43 45
THIN BED REFLECTION Theory Examples and Discussions	65 65 67
CONCLUSIONS	7 8
APPENDICES	80
SELECTED REFERENCES	156

ABSTRACT

Numerical seismic modeling techniques were developed by using finite difference solutions to one- or two-dimensional inhomogeneous elastic wave equations. Analytic solutions for the modeling of plane wave propagation in horizontally layered media were also obtained.

The first part of this report presents solutions to a one-dimensional elastic wave propagation equation by an analytic method and a finite difference method. The second part presents some solutions to a two-dimensional elastic wave equation by a finite difference method in an orthogonal cartesian coordinate system. The third part presents some calculations of wide angle reflection coefficients and interference patterns associated with a thin bed with varying angles of longitudinal wave incidence using Haskell's matrix method.

This study showed that a finite difference approach for numerical seismic modeling may be a good method, particularly in two-dimensional cases when there is emphasis on the amplitude and shape of seismic signals returning to the surface.

The following three computer programs and user's manuals are included in the appendices:

- (1) Synthetic seismogram computer program for a plane wave in perfectly elastic media.
 - (2) One-dimensional finite difference computer program.
 - (3) Two-dimensional finite difference computer program.

FIGURES

Figure	e .	Pag	zе
1.	Multi-layered half-space	•	5
2.	Normal incidence of a plane wave at a boundary.	•	14
3.	Four-fold surface to surface synthethic seismog: for Lusk area, Wyoming	ram •	18
4.	Velocity versus time at Lusk area, Wyoming	•	19
5.	Vertical seismic profiles for the Collins Well, Wyoming	•	20
6.	One-layered half-space attenuating model	•	21.
7.	Amplitude and phase distortion of a reflected wave due to attenuation	•	22
8.	Geometry for one-dimensional perfectly elastic model	•	29
9.	Comparision between an analytic solution and finite difference solution for a perfectly elastic model	•	31
10.	Comparision between an analytic solution and finite difference solution for Toigt solid	•	32
11.	Attenuatio of longitudinal waves versus frequency	• •	33
12.	Amplitude spectrum of the displacement at $x = 2$ due to a unit delta function displacement input		_
13.	Amplitude spectrum of the displacement at $x = 1$ due to a unit delta function displacement input	00 △ • •	Х 36
14.	Elastic constant transition for an inhomogeneous formulation	•	42
15.	P-wave grid dispersion relation for p-0.3 and r-0.		46

Figure	P	age
16.	P-wave grid dispersion relation for p=0.7 and r=0	47
17.	S-wave grid dispersion relation for p=0.3.and r=0.16	49
18.	S-wave grid dispersion relation for p=0.7 and r=0.16	50
19.	Radial displacement at x=5 and x=20 in a whole space	51
20.	Radial displacement at $\theta=0^{\circ}$ and $\theta=37^{\circ}$	52
21.	Vertical and horizontal displacements on the free surface of an elastic half-space	54
22.	Geometry for a vertical fault model	55
23.	Vertical displacement on the free surface for a vertical fault model, embedde in a fluid	56
24.	Vertical displacement on the free surface for a vertical fault model, embedded in a solid	57
25.	Geometry for one-layered half-space model	59
26a.	Vertical displacement on the free surface for one-layered half-space model	60
26b.	In-line horizontal motion on the free surface for one-layered half-space model	61
27.	Geometry for localized inhomogeniety model	62
	Vertical displacement on the free surface for localized inhomogeneous model	63
28b.	In-line horizontal displacement on the free surface for localized inhomogeneous model	64
29.	Thin bed reflection and transmission	66
30.	Energy partition for the reflected p-wave with varying bed thickness as a function of incidence angle	69
31.	Energy partition for reflected s-wave with varying bed thickness as a function of incidence angle.	70

Figu:	re Pa
32.	Energy partition for the transmitted p-wave with varying bed thickness as a function of incidence angle
33.	Energy partition for the transmitted s-wave with varying bed thickness as a function of incidence angle
34.	Energy partition for the reflected p-wave with varying angle of incidence as a function of frequency
35.	Energy partition for reflected s-wave with varying angle of incidence as a function of frequency
36.	Energy partition for the reflected p-wave with varying angle of incidence as a function of frequency
37.	Energy partition of the reflected s-wave with varying angle of incidence as a function of frequency

TABLES

																Page
1.	Parameters	of.a	thin	bed-A.	•	•	•	•	•	•	•	•	•	•	•	68
2.	Parameters	of a	thin	bed-B.	•	•	•	•	•	•	•	•	•	•	•	68

APPENDICES

A.	Computer Program and User's Manual for Synthethic Seismogram for Horizontally Layered Perfectly						
	Elastic Half-space	1					
в.	Computer Program and User's Manual for One-dimensional Finite Difference Scheme 108	3					
c.	Computer Program and User's Manual for Two-dimensional Finite Difference Scheme 127	7					

INTRODUCTION

In seismic exploration, it is very important to compute the shape and amplitude of reflected and transmitted seismic signals for a complex subsurface geologic model. Particularly, in stratigraphic trap oil exploration, the examination of amplitude anomalies of seismic signals play an important role in the interpretation stage in contrast to the travel time anomaly used in the structural oil trap exploration. Also the advent of vertical seismic profiles has increased the applicability of the seismic modeling still more.

The purpose of this report is to study some of the basic theories of elastic wave propagation and to make a computer program to calculate reflected and transmitted seismic signals very efficiently.

Numerous authors (Peterson and others, 1955; Wuenschel, 1960; Trorey, 1962) have studied plane wave propagation in a horizontally layered media using an analytic solutions to a one-dimensional wave equation. For a perfectly elastic medium, this analytic solution approach is the best, in this author s opinion. However, for the realistic earth material which always has some degree of attenuation, this analytic solution is difficult to program. Therefore, we studied an inhomogeneous, attenuating one-dimensional wave equation by a finite difference scheme along with the analytic solution approach.

One of the advantage of this finite difference approach over the analytic solution approach can be found in making synthethic vertical seismic profiles, or VSP s. In finite difference schemes, we must calculate seismic signals at all grid points to solve the wave equation. Therefore, the execution time for one output trace is exactly the same as

for the outputs at all grid points in a model. On the other hand, one of the disadvantages of finite difference approaches is its inaccuracey due to the accumulation of local truncation errors, propagation errors, and grid dispersion errors, which almost surely will increase as the length of a seismogram increases.

We studied very simple models using finite difference approaches and compared these with corresponding analytic solutions. We found good agreement.

For an irregular boundary and/or non-normal incidence, we conventionally use ray tracing techniques. For the computation of arrival times of seismic signals from the different geologic boundaries, this approach provides reliable information. But for true amplitude calculations, and particularly in the study of converted waves, this ray tracing technique fails. Thus, as in the one-dimensional case, we studied two-dimensional wave propagation by a finite difference approach.

Aboudi (1971) computed elastic wave fields by a finite difference scheme with a body force as a forcing function. Alterman and Aboudi (1970) studied a one-layered half-space in a cylindrical coordinate system by implementing the analytic solution around the source region with a difference scheme. Also Alford and others (1974) investigated diffraction problems and the accuracy of finite difference schemes in an acoustic material by solving for a displacement potential function with an analytic solution around the source.

Those authors, in common, used a homogeneous wave equation and fitted the boundary conditions at many boundaries. If these boundaries are simple (vertical or horizontal interface) and there are not many of them, this approach may be appropriate. But for complex geological models, this homogeneous formulation may not be adequate. Therefore, we studied an inhomogeneous wave equation using a finite difference approach.

Finally we studied wide angle reflection coefficients and interference patterns due to a thin bed by Haskell's matrix method.

This report has three parts. The first part of this report presents the solution of a one-dimensional elastic wave equation by analytic and finite difference approaches. The second part presents a finite difference scheme for solving a two-dimension inhomogeneous elastic wave equation. The third part presents the reflection coefficients of a thin bed.

Three computer programs and users's manuals are included in the appendices:

- (1) Synthethic seismogram computer program for a plane wave in perfectly elastic media.
 - (2) One-dimensional finite difference computer program.
 - (3) Two-dimensional finite difference computer program.

ONE-DIMENSIONAL WAVE PROPAGATION

In geophysical exploration, it is very useful to compute reflected and transmitted seismic signals for a horizontally layered half-space, assuming plane wave propagation. Numerous authors have studied this one-dimensional wave propagation problem, either without multiples (Peterson and others, 1955) or with multiples (Wuenschel, 1960; Trorey, 1962), either without attenuation (Peterson and others, 1955; Wuenschel, 1960) or with attenuation (Trorey, 1962).

The purpose of this study is to make a computer program to solve this horizontally-layered problem. We followed Wuenschel's approach to make a synthetic seismogram for a perfectly elastic medium, with all multiples. We also studied the phase and amplitude distortion of a reflected plane wave with attenuation but without multiples. Finally, we studied the latter problem using a finite difference scheme to solve an inhomogeneous, attenuating onedimensional wave equation.

Analytic Solution

(A) Perfectly Elastic Medium

To calculate the reflected and transmitted seismic signals, consider Figure 1, composed of N layers of homogeneous, isotropic and perfectly elastic material.

Fire	Surface	
P,,	V,	1
Pa,	V2	
		V
		Z

Figure 1. Multi-layered half-space.

The one-dimensional wave equation to be solved in each layers is

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{V^2} \frac{\partial^2 u}{\partial t^2}$$

where $\mathcal U$ is the particle displacement, V is the compressional velocity of the medium, and $\mathcal E$ is time.

Let

$$\overline{U}(x) = \int_{0}^{\infty} e^{-xt} u(x,t) dt$$

Then the Laplace transformed solution of the wave equation for the h-th layer is

$$\overline{U}_n = \overline{I}_n e^{-\chi A/V_n} + R_n e^{\chi A/V_n}$$

$$= \overline{I}_n e^{-\lambda n \Delta_3} + R_n e^{\lambda n \Delta_3}$$
(1)

where neg is one way travel time from the free surface to n-th layer.

The transformed stress in the h-th layer can be written as

$$\overline{O}_{n} = -A I_{n} Z_{n} e^{-A n \Delta_{n}^{2}} + A R_{n} Z_{n} e^{-A n \Delta_{n}^{2}}$$
(2)

where

or

 $\frac{l_n}{l_n}$: density in the n-th layer $\frac{l_n}{l_n}$: normal stress.

The boundary condition to be satisfied in each layer is:

(1) When there is no source at h -th interface,

$$\overline{U_n} = \overline{U_{n+1}}$$

$$\overline{O_n} = \overline{O_{n+1}}$$
(3)

(2) When there is a unit impulsive velocity source at η -th interface,

$$\frac{\partial U_{n+1}}{\partial t} - \frac{\partial U_n}{\partial t} = \overline{\partial}(t), \quad \overline{\sigma}_{n+1} = \overline{\sigma}_n$$

$$\overline{U}_{n+1} - \overline{U}_n = \frac{1}{R}$$

$$\overline{\sigma}_{n+1} = \overline{\sigma}_n$$
(4)

6

When there is a source on the free surface, we used a pressure source.

Assume that there is a unit impulsive velocity source at k-th interface. Using Equation (1), (2), and (4), we can show that, in matrix notation,

$$\begin{pmatrix}
I_{A} \\
R_{R}
\end{pmatrix} = \frac{1}{\frac{1}{2(4+1)}} \begin{pmatrix}
I_{A(4)}3^{-\frac{1}{4}} & Q_{1} \\
I_{A(4)}3^{\frac{1}{4}} & Q_{2}
\end{pmatrix} \begin{pmatrix}
I_{A+1} \\
I_{A(4)}3^{\frac{1}{4}} & Q_{2}
\end{pmatrix}$$
where

$$V_{k}(h_{t}) = \frac{Z_{k} - Z_{k+1}}{Z_{k} + Z_{k+1}}$$

$$t_{k(h+1)} = \frac{\lambda \, \tilde{z}_k}{\tilde{z}_k + \tilde{z}_{k+1}}$$

$$t_{k(k+1)} = \frac{2 \, \overline{t_k}}{\overline{t_k} + \overline{t_{k+1}}}$$

$$Q_i = \frac{-\overline{t_k} \, 3^{-k/2}}{A \left(\, \overline{t_k} + \overline{t_{k+1}} \right)}$$

$$Q_{2} = \frac{-Z_{k} 3^{\frac{k}{2}}}{A(Z_{k} + Z_{k+1})}$$

$$3^{\frac{1}{2}} = e^{-A^{\frac{k}{2}}}$$

When there is no source at an interface, we can show the following:

$$\begin{bmatrix}
I_n \\
R_n
\end{bmatrix} = \frac{1}{t_{n(n+1)}} \begin{bmatrix}
1 & \gamma_{n(n+1)} \\
\gamma_{n(n+1)} \\
\gamma_{n(n+1)}
\end{bmatrix} \begin{bmatrix}
I_{n+1} \\
R_{n+1}
\end{bmatrix} (6)$$

$$\triangleq \begin{bmatrix} C_n \end{bmatrix} \begin{bmatrix} I_{n+1} \\
R_{n+1} \end{bmatrix}$$

Therefore, if there is no source, by iteration,

$$\begin{pmatrix} Z_n \\ R_n \end{pmatrix} = \begin{pmatrix} C_n \end{pmatrix} \begin{pmatrix} C_{n+1} \end{pmatrix} \begin{pmatrix} C_{n+2} \end{pmatrix} \begin{pmatrix} Z_{n+3} \\ R_{n+3} \end{pmatrix}$$
 (7)

By combining Equation (5) and Equation (7), assuming there is only one source at k-th interface, the following equation can be derived:

$$\begin{bmatrix}
I_{k} \\
I_{k}
\end{bmatrix} = \frac{1}{\xi_{k(thH)}} \begin{bmatrix}
1 & Y_{k(thH)} & Z_{k(thH)} & Z_{k(thH)}$$

$$\begin{bmatrix}
z_{i} \\
k_{i}
\end{bmatrix} = \begin{bmatrix}
k_{i} \\
j = i
\end{bmatrix} \begin{bmatrix}
\zeta_{j}
\end{bmatrix} \begin{bmatrix}
Z_{k} \\
k_{k}
\end{bmatrix}$$
(9)

Equations (8) and (9) are the essence of the synthetic seismogram computation.

From Equations (8) and (9), it can also be shown

$$\begin{bmatrix}
Z_{i} \\
R_{i}
\end{bmatrix} = \begin{bmatrix}
\mathcal{N} \\
\mathcal{T}
\end{bmatrix} \{\zeta_{j}\} \begin{bmatrix}
\mathcal{T}_{NH} \\
\mathcal{R}_{NH}
\end{bmatrix} + \begin{bmatrix}
\mathcal{L}_{H} \\
\mathcal{T}
\end{bmatrix} \{\zeta_{j}\} \begin{bmatrix}
Q_{i} \\
Q_{2}
\end{bmatrix} (10)$$

where

$$Q_1' = \frac{Q_1}{\pm c_{A}n_1h}$$
, $Q_2' = \frac{Q_2}{\pm a_1(b_A)}$

In the following subsection we calculate the geophone velocity response for the specific source and detector location.

(1) Source at free surface...As mentioned before, in this case, the source is a pressure impulse.

From Equation (2), at $\chi=0$,

$$\overline{b_o} = -Af_i V_i(Z_i - R_i) = -\overline{p(a)}$$

where $\overline{\rho}(a)$ is the Laplace transformed source function. Define

$$\begin{pmatrix} C \end{pmatrix} = \frac{N}{J} \begin{pmatrix} C_{\bar{J}} \end{pmatrix} = \begin{pmatrix} C_{II} & C_{I2} \\ C_{2I} & C_{ZZ} \end{pmatrix}$$
(11)

Since there is no source from the first to the \mathcal{N} -th interface, using Equation (9),

Notice that there is no incoming plane wave from the half-space, so we can set $R_{N+1} = 0$. Therefore.

$$Z_{i} = \frac{\overline{p(\alpha)} C_{ii}}{A Z_{i} (C_{ii} - C_{2i})}$$

$$R_{i} = \frac{\overline{p(\alpha)} C_{2i}}{A Z_{i} C_{2i} - C_{2i}}$$
(12)

Define

$$w = \frac{\partial u}{\partial t}$$
, $\overline{w} = \int_{0}^{\infty} e^{-xt} \omega(t) dt$.

When a detector is on the free surface, using Equations (1) and (12),

$$\overline{W}_{o} = \frac{\overline{P(a)}(C_{II} + C_{2I})}{f_{i}V_{i}(C_{II} - C_{2I})}.$$
(13)

When a detector is on the \(\begin{aligned} \ -\text{th interface,} \end{aligned} \)

$$\overline{W}_{e} = \overline{p}(R) \left(\lambda I_{e} 3^{\frac{1}{2}} + \lambda R_{e} 3^{\frac{1}{2}} \right).$$

Let

$$\frac{\mathcal{N}}{\mathcal{I}}\left(C_{\bar{j}}\right) = \begin{pmatrix} D_{i}^{\ell} & D_{i2}^{\ell} \\ D_{2i}^{\ell} & D_{22}^{\ell} \end{pmatrix} \tag{14}$$

Then,

$$I_{\ell} = O_{i,\ell}^{\ell} I_{N+\ell}$$

$$R_{\ell} = O_{2i,\ell}^{\ell} I_{N+\ell}$$

Therefore,

$$\overline{W}_{\ell} = \frac{\overline{p} \, 3^{\frac{\ell}{2}}}{\ell_{1} \nu_{1} \, (C_{11} - C_{21})} \, (D_{11}^{\ell} + 3^{\ell} D_{21}^{\ell}) \tag{15}$$

(2) Source at the *m*-th Interface...From Equation (10).

$$Q_1' = \frac{-3^{m/2}}{2\lambda}$$
, $Q_2' = \frac{-3^{m/2}}{2\lambda}$

Since there is a source on the m-th interface, a free boundary condition must be satisfied at x = 0.

Therefore, from Equation (4), $z_i = k_i$.

Define

$$\prod_{j=1}^{m-1} \left(C_j \right) = \begin{bmatrix} S_{i,j}^m & S_{i,2}^m \\ S_{i,j}^m & S_{i,2}^m \end{bmatrix}$$

$$(16)$$

From Equations (9) and (10), using Equation (16),

$$Z_{W+1} = \frac{Q_1'(S_2''_1 - S_1''_1) + Q_2'(S_2''_2 - S_1''_2)}{C_{11} - C_{21}}$$

$$I_1 = G_{11}(S_2^{n}Q_2' + S_1^{n}Q_1') - G_{21}(S_1^{n}Q_1' + S_1^{n}Q_2')$$

where

$$G_{11} = \frac{C_{11}}{C_{11} - C_{21}}$$
, $G_{21} = \frac{C_{21}}{C_{11} - C_{21}}$

When a detector is on the free surface,

$$\overline{W}_{0} = \overline{3}^{n/2} \overline{p}(R) (921\overline{S} - 911\overline{S}),$$
 (17)

where

$$\vec{S} = S_{11}^{11} + 3^{11} S_{12}^{11}$$

 $\vec{S} = S_{21}^{11} + 3^{11} S_{22}^{11}$

When a detector is on the ℓ -th interface and $\ell > m$, we can show that

$$\overline{W}e = \frac{\sqrt{\frac{e^{-\eta_1}}{2}}}{2} \left(\frac{E}{c_{11} - c_{21}} \right) \left(D_{11}^{0} + \delta^{-1} D_{21}^{0} \right) , \quad (18)$$

where

When a detector is on the ℓ -th interface and $\ell \ell m$, we can show that

$$\overline{W}_{2} = \frac{Z_{1}}{Z_{1}^{2}} \frac{3^{-\frac{(d+m)}{2}}}{(D_{1}^{1} - B_{1}^{1} + 3^{2}D_{2}^{1} - 3^{2}D_{2}^{1})(G_{2}, \overline{5} - G_{1}, \overline{5})}{(19)}$$

The main computation for a synthetic seismogram is the multiplication of the layer matrix. An iterative scheme to calculate matrix multiplication is as follows:

From Equation (6)

Let
$$\begin{pmatrix} C_n \end{pmatrix} = \frac{1}{t_{n(n+1)}} \begin{pmatrix} \gamma_{n(n+1)} & \gamma_{n(n+1$$

Define

$$\frac{\mathcal{T}}{\mathcal{T}}\left[\mathcal{G}_{n}\right] = \left[\mathcal{O}_{m}^{2}\right] = \left[\mathcal{G}_{c}\right]\left[\mathcal{G}_{cr_{1}}\right] \cdots \left[\mathcal{G}_{cr_{m-1}}\right]$$
(21)

where $m = \bar{J} - \bar{i} + l$.

From Equation (21)

$$\left(\mathcal{O}_{m}^{c} \right) = \left(\mathcal{O}_{m-1}^{c} \right) \left(\mathcal{G}_{crm-1} \right) .$$

Let

Then, by the matrix multiplication,

$$md_{11}^{\dot{\alpha}} = m \cdot d_{11}^{\dot{\alpha}} + (m - 1 d_{12}^{\dot{\alpha}})(\hat{\alpha} + m + 1 d_{21}^{\dot{\alpha}})$$

$$md_{12}^{\dot{\alpha}} = (m - 1 d_{11}^{\dot{\alpha}})(\hat{\alpha} + m + 1 d_{12}^{\dot{\alpha}}) + (m - 1 d_{11}^{\dot{\alpha}})(\hat{\alpha} + m + 1 d_{22}^{\dot{\alpha}}).$$
(22)

By the properties of matrix

$$md_{12}^{(2)}(3) = md_{21}(\frac{1}{2})$$

From Equation 20 and Equation 22,

$$\begin{aligned} & i \, d_{i} \hat{a} &= 1 &\triangleq \hat{E}_{i}(a) \\ & i \, d_{i} \hat{a} &= R_{i} \hat{a}^{2} \triangleq \hat{E}_{i}(a) \hat{a}^{2} \\ & 2 \, d_{i} \hat{a}^{2} &= (i \, d_{i} \hat{a}^{2}) (i \, d_{i} \, d_{i} \hat{a}) + (i \, d_{i} \hat{a}^{2}) (i \, d_{i} \, d_{i} \hat{a}) \\ &= 1 + R_{i} \, R_{i} \, d_{i} \hat{a}^{2} \\ &\triangleq \hat{E}_{i}(a) + \hat{E}_{i}(i) \hat{a} \\ &\triangleq \hat{E}_{i}(a) + \hat{E}_{i}(i) \hat{a} \\ &\triangleq \hat{E}_{i}(a) \hat{a}^{2} + \hat{E}_{i}(a) \hat{a}^{2} \\ &\triangleq \hat{E}_{i}(a) \hat{a}^{2} + \hat{E}_{i}(a) \hat{a}^{2} \end{aligned}$$

By induction, we can show that

$$md_{1}^{i} = 1 + \dot{E}_{1}^{i}(1) \dot{g} + \dot{E}_{2}^{i}(2) \dot{g}^{2} + \cdots + \dot{E}_{n}^{i}(n-1) \dot{g}^{n-1}$$

$$md_{1}^{i} = \dot{E}_{n}^{i}(i) \dot{g}^{-i} + \dot{E}_{n}^{i}(i+1) \dot{g}^{-(i+1)} + \cdots + \dot{E}_{n}^{i}(i+n-1) \dot{g}^{-(i+n-1)}$$
(23)

Combining Equation 22 and Equation 23,

$$mdn = (1 + \hat{E}_{ij}(1)3 + \cdots + \hat{E}_{ij}(n-2)3^{-1})_{i+m-1}\hat{g}_{ij}$$

$$+ (\hat{E}_{ij}(k)3^{-1} + \hat{E}_{ij}(k)3^{-1} + \cdots + \hat{E}_{ij}(i+m-2)3^{-1})_{i+m-1}\hat{g}_{ij}$$

$$= (1 + 3)(\hat{E}_{ij}(1) + \hat{E}_{ij}(i+m-2)R_{i+m-1})$$

$$+ 3^{-1}(\hat{E}_{ij}(k) + \hat{E}_{ij}(i+m-k-1)R_{i+m-1})$$

$$+ 3^{-1}(\hat{E}_{ij}(m-2) + \hat{E}_{ij}(i+1)R_{i+m-1})$$

$$+ 3^{-1}(\hat{E}_{ij}(m-2) + \hat{E}_{ij}(i+1)R_{i+m-1})$$

$$+ 3^{-1}(\hat{E}_{ij}(m-2) + \hat{E}_{ij}(i+1)R_{i+m-1})$$

This is the iterative formula for the matrix multiplication.

Likewise, we can show that

$$md_{j_{2}}^{2} = 3^{i} \stackrel{\dot{E}}{E}_{j_{2}}(i) + 3^{(i+1)} \left\{ \stackrel{\dot{E}}{E}_{j_{2}}(i+1) + \stackrel{\dot{E}}{E}_{j_{1}}(m-1) \stackrel{\dot{E}}{R}_{i+n-1} \right\}$$

$$+ 3^{(i+1)} \left\{ \stackrel{\dot{E}}{E}_{j_{2}}(i+1) + \stackrel{\dot{E}}{E}_{j_{1}}(m-1) \stackrel{\dot{E}}{R}_{i+n-1} \right\}$$

$$+ 3^{-(i+1)} \left\{ \stackrel{\dot{E}}{E}_{j_{2}}(i+1) + \stackrel{\dot{E}}{E}_{j_{1}}(m-1) \stackrel{\dot{E}}{E}_{j_{1}}(i) \stackrel{\dot{E}}{R}_{i+n-1} \right\}$$

$$+ 3^{-(i+n-1)} \stackrel{\dot{E}}{R}_{i+n-1} .$$

$$(25)$$

(B) Attenuating medium

In the case where the medium is not perfectly elastic, the reflection and transmission coefficients are complex qualities. So we studied the effect of these complex reflection and transmission coefficients for a plane wave in a horizontally layered half-space without multiples, and showed how to compute a synthetic seismogram for this situation.

A solution of the one-dimensional wave equation in an attenuating medium can be written as

$$\overline{U(w)} = \overline{Z(w)}e^{-dX} = \frac{iwX}{V} + R(w)e^{dX} = \frac{iwX}{V}$$
 (26)

where $\overline{\mathcal{U}}(\omega)$ is the Fourier transform of the displacement and α is an attenuation constant.

To calculate reflection and transmission coefficient, consider the following situation.

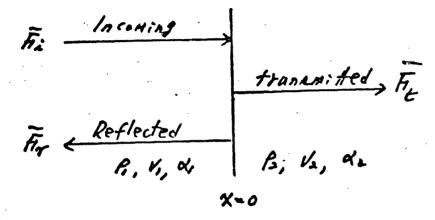


Figure 2. Normal incidence of a plane wave at a boundary.

From Equation 26, the stress can be written

$$\overline{\sigma}(\omega) = -\rho v^2 E(\alpha + \frac{\lambda \omega}{V}) e^{-\alpha x} e^{-\lambda \omega \frac{x}{V}} + \rho v^2 R(\alpha + \frac{\lambda \omega}{V}) e^{-\lambda \omega \frac{x}{V}}$$

The boundary conditions at %=0 are

$$\frac{\overline{U_1} = \overline{U_2}}{\overline{G_1}} = \overline{\overline{G_2}}$$

Let

$$\begin{aligned}
\overline{h}_{i} &= h_{i} e^{-d_{i} \times e^{-\lambda \omega} \frac{\chi}{V_{i}}} \\
\overline{h}_{i} &= h_{i} e^{-d_{i} \times e^{-\lambda \omega} \frac{\chi}{V_{i}}} \\
\overline{h}_{r} &= h_{r} e^{-d_{r} \times e^{-\lambda \omega} \frac{\chi}{V_{r}}} \\
\overline{h}_{e} &= h_{r} e^{-d_{r} \times e^{-\lambda \omega} \frac{\chi}{V_{r}}}.
\end{aligned}$$

Therefore, the boundary conditions become,

Let

$$Z_i = f_i V_i$$

 $G_i = d_i V_i$

Then,

$$\widehat{Z} = \frac{A_r}{A_i} = \frac{Z_r(d_1V_1 + i\omega) - Z_L(d_2V_2 + i\omega)}{Z_r(d_1V_1 + i\omega) + Z_L(d_2V_2 + i\omega)}$$

$$\widehat{T} \triangleq \frac{A_{\epsilon}}{A_{i}} = \frac{2Z_{i}(V_{i}d_{i} + i\omega)}{Z_{i}(d_{i}V_{i} + i\omega) + Z_{i}(d_{i}V_{i} + i\omega)}$$

Let's assume $\alpha_{\tilde{\mathcal{L}}}$ is proportional to the seismic wave frequency, so that

Define

$$\gamma_{i} = \sqrt{\left(\underline{z}_{i}\beta_{i} + \underline{z}_{2}\beta_{2}\right)^{2} + \left(\overline{z}_{i} + \underline{z}_{2}\right)^{2}}$$

$$\gamma_{2} = \sqrt{\left(\overline{z}_{i}\beta_{i} - \overline{z}_{2}\beta_{2}\right)^{2} + \left(\overline{z}_{i} - \overline{z}_{2}\right)^{2}}$$

$$\chi_{1} = \tan^{-1}\frac{\underline{z}_{i} + \underline{z}_{2}}{\underline{z}_{i}\beta_{i} + \underline{z}_{2}\beta_{2}}$$

$$\chi_{2} = \tan^{-1}\frac{\underline{z}_{i} - \underline{z}_{2}}{\underline{z}_{i}\beta_{i} - \underline{z}_{2}\beta_{2}}$$

$$\gamma_{3} = 2\underline{z}_{i}\sqrt{\beta_{i}^{2} + 1}$$

$$\chi_{3} = -\tan^{-1}\frac{1}{\beta_{i}}$$

Then,

$$\widehat{R} = \frac{n}{\eta} e^{i(\lambda_2 - \lambda_1) \operatorname{agn}(\omega)} \stackrel{\triangle}{=} R e^{i\theta_r}$$

$$\widehat{T} = \frac{n}{\eta} e^{i(\lambda_3 - \lambda_1) \operatorname{agn}(\omega)} \stackrel{\triangle}{=} T e^{i\theta_r}$$

The general form of \mathcal{R}_{1} , \mathcal{T}_{n} at n-H interface can be,

$$\hat{R}_{n} = R_{n} e^{i \Theta_{n} R g_{n} \omega}$$

$$\hat{T}_{n} = T_{n} e^{i \Theta_{n}' R g_{n} \omega}$$

$$\hat{T}_{n}' = T_{n}' e^{i \Theta_{n}'' R g_{n} \omega}$$

where \widehat{T}_n is the transmission coefficient from (n+1)-th to n-th layer.

The layer thickness is adjusted such that $2\frac{d}{h} = 2$ is constant in all layers.

This means that the two-way travel time in each layer is the same.

Therefore, the reflected displacement on the free surface due to the h-th reflector can be written in the following form in the frequency domain with unit delta function input.

$$\overline{U_n(\omega)} = \lambda \, \mathcal{D}_{n-1}(\omega) \, e^{-H_n(\omega)} \, \frac{i(\theta_n + E_{n-1}) \, 4g_n(\omega)}{k_n \, e} \, e^{-i\omega n \, 2} \,$$
(27)

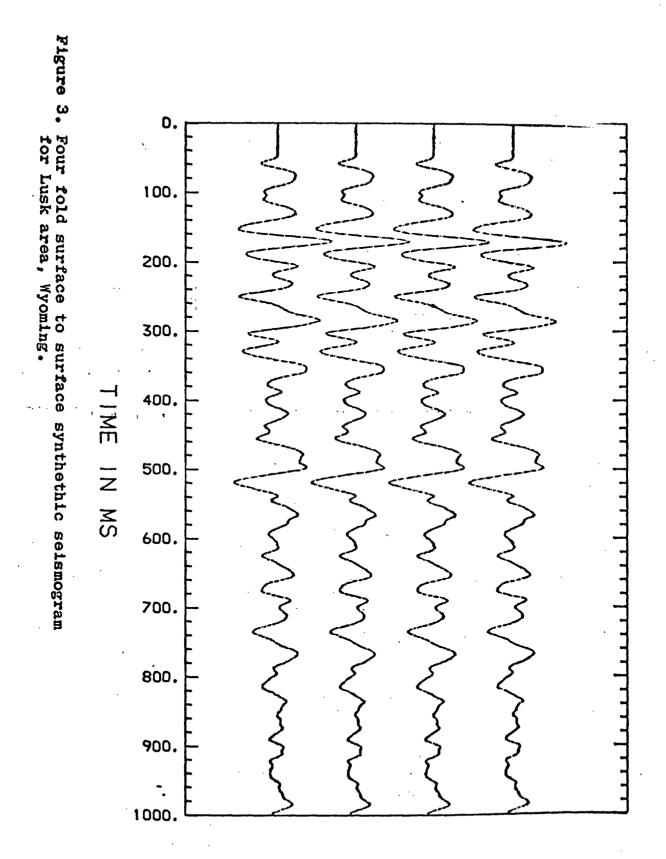
where

$$H_{n} = 2 \sum_{c=1}^{n} d_{i} d_{i}$$

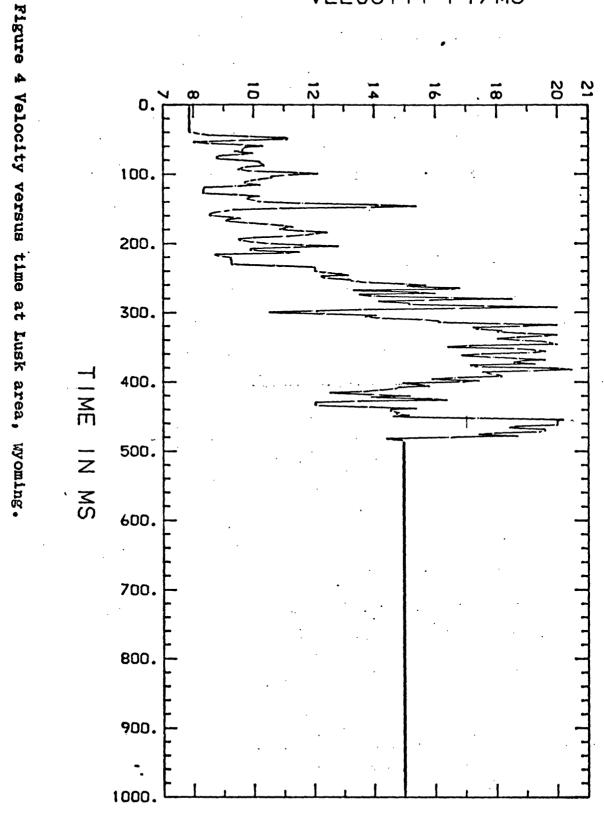
$$E_{n} = \sum_{c=1}^{n} (\theta_{c}^{\prime} + \theta_{n}^{\prime\prime})$$

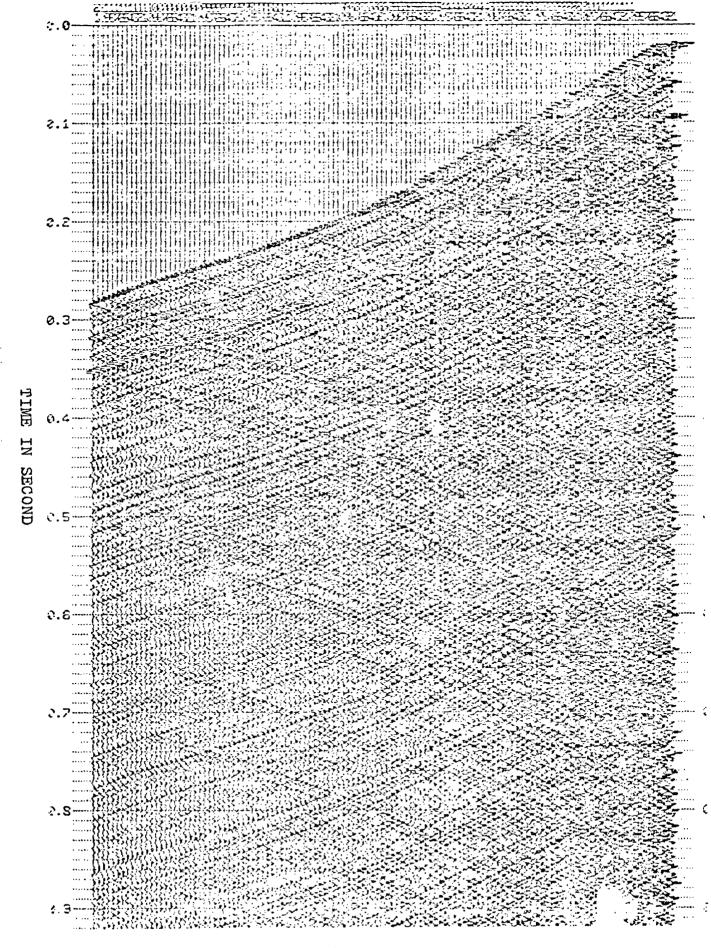
$$O_{n} = \prod_{c=1}^{n} T_{i} T_{c}^{\prime}$$

The synthetic seismogram is the sum of the series of reflections. Therefore, for a N-layered half-space, the total impulse response in the frequency domain is


$$\overline{U}(w) = 2 \sum_{k=1}^{N} D_{k-1} e^{-\frac{1}{2}|w|} l_{k} e^{i(\theta_{k} + \xi_{k-1}) 4gn(w)} - iwk e^{-iwk}$$
 (28)

Examples and Discussions


Figure 3 shows a 4-fold surface to surface synthetic seismogram from a sonic log acquired at the Lusk area, Wyoming. A velocity versus time section plot is shown in Figure 4. In this synthetic seismogram, we deleted the source pulse since its amplitude is so large it obscures the reflections.


The computer execution time to make a 2.2 second synthetic seismogram for a surface source and a surface receiver from about 6,000 sonic data points (2 feet sampling interval) and 1 milli-second time sampling (2 milli-seconds for two-way travel time) is 1.5 seconds on the PDP-10.

Another useful application of this modeling program is to make vertical seismic profiles (VSP's). This is done by generating a whole series of synthetic seismograms, each one assuming successively greater geophone burial depth. From the attached computer program, which is written only for one source and one receiver position for each execution, it is easy to make VSP's. Figure 5 shows 121 synthetic seismograms for the Collins well, Wyoming. Each member of the set represents the wave field at a different burial depth.

VELOCITY FT/MS

The phase and amplitude change due to a complex reflection coefficient was studied using a simple model without multiples. The model description is shown in Figure 6.

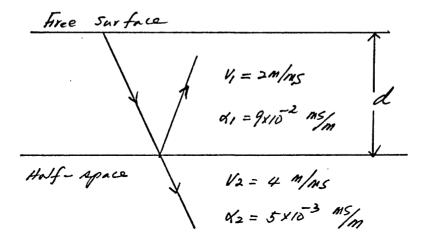


Figure 6. One-layered half-space attenuating model.

Let the input wave function be $P_{T}(t)$, which we take as

$$P_{T}(t) = 1$$
 when $0 < t < T$

$$= 0$$
 otherwise.

The reflected pressure U(t) at the free surface can be written, using Equation 28, as

$$U(t) = \frac{2R\omega\theta}{\pi} \left(\tan^{-1} \frac{t-2}{\beta} - \tan^{-1} \frac{t-2-T}{\beta} \right)$$
$$- \frac{2R\sin\theta}{\pi} \ln \frac{\beta^{2} + (t-2)^{2}}{\beta^{2} + (t-2-T)^{2}}$$

where R is the amplitude of the complex reflection coefficient, Θ is the phase angle of the reflection coefficient, $\mathcal{E} = \frac{2d}{V_I}$, and $\mathcal{E} = 2\alpha, d$.

Figure 7 shows the reflected wave form with varying layer depth "d", from 5 m to 200 m. From Figure 7, we can easily see that the phase distortion due to a complex reflection coefficient may be negligible unless "d" is small. When "d" is large, we can see only broadening of the wave form due to attenuation. So, in calculating a synthetic seismogram for many layered case, we may use a real reflection and transmission coefficients.

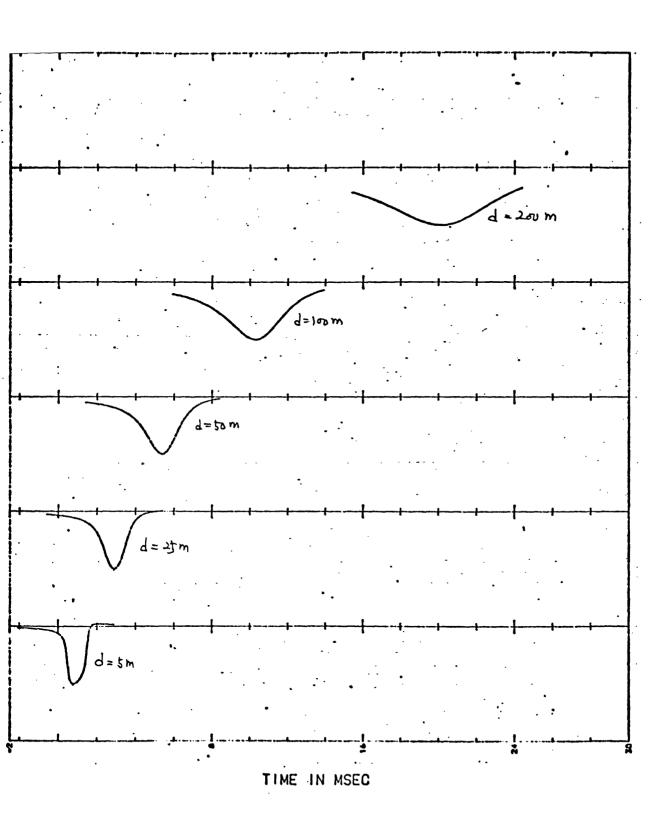


Figure 7. Amplitude and phase distortion of a reflected wave due to attenuation.

Although phase distortion may not be seen in a synthetic seismogram, it might be worth while to include the complex reflection and transmission coefficient in the following cases:

- (1) To study a thin layer with high acoustic impedance and attenuation contrast with adjacent layers, especially when receiver and source are very close to the thin layer.
 - (2) Theoretical study.

Finite Difference Solution

The numerical solution of an elastic wave equation with a finite difference technique and high-speed digital computers has become a powerful seismic modeling tool. The analytic wave equation solution for an inhomogeneous, attenuating medium with multiples is very complicated. Even if we find the analytic solution, the numerical computation of the results is lengthy and complex. This is the reason we studied a finite difference scheme to solve the one-dimensional wave equation.

In this study, we included a perfect elastic medium, a Voigt Solid, and a medium whose attenuation is approximately dependent on the first power of frequency over any limited frequency range.

Since we are interested in many-layered earth models, we solved an inhomogeneous wave equation with two boundaries (one at a free surface and the other at the top of a half-space) instead of solving a homogeneous wave equation with many boundaries.

(A) Perfectly Elastic Medium

The inhomogeneous wave equation in a perfectly elastic medium is

$$\rho \frac{\partial^2 \mathcal{U}}{\partial t^2} = \frac{\partial}{\partial x} \alpha \frac{\partial \mathcal{U}}{\partial x} \tag{29}$$

where f is density, $\alpha = c\lambda + 2\mu$, λ and μ are Lame constant, κ is vertical distance, and \pm is time.

We will replace the continuous function $\mathcal{U}(x,t)$ with discrete samples of this function as

$$U(X,t) \rightarrow U(j \triangle X, n \triangle t) \triangleq U_j^n$$

Using the central difference formula, we can show that

$$\frac{\partial}{\partial x}(x\frac{\partial U}{\partial x}) \rightarrow \frac{\chi_{j+\frac{1}{2}}U_{j+1}^{n} - (\alpha_{j+\frac{1}{2}} + \alpha_{j-\frac{1}{2}})U_{j}^{n} + \alpha_{j-\frac{1}{2}}U_{j-1}^{n}}{(\alpha x)^{2}}$$

$$\frac{\partial^{2}U}{\partial E^{2}} \rightarrow (U_{j}^{n+1} - 2U_{j}^{n} + U_{j}^{n+1})/(\Delta t)^{2}.$$

Therefore, Equation 29 can be written as the following difference equation

$$U_{j}^{nH} = 2U_{j}^{n} - U_{j}^{n-1} + h_{j} \left\{ d_{j+\frac{1}{2}} + d_{j+\frac{1}{2}} + d_{j+\frac{1}{2}} \right\}$$
where
$$h_{j}^{-} = \frac{(\Delta t)^{2}}{R (\Delta x)^{2}}$$
(30)

Equation 30 is an explicit difference scheme, and we can compute the displacement at each grid point at time step (1/2) in terms of the displacement at the previous time steps (1/2) and (1/2).

The solution of Equation 30 has physical meaning only when the finite difference equation is stable. The sufficient stability condition of the above difference scheme may be derived by considering a homogeneous wave equation.

The stability condition for a homogeneous wave equation is

$$V_{\Delta t}^{\Delta X} \le 1$$
, where V is the velocity.

So, we used the following stability condition

$$V_{max} \stackrel{\Delta X}{\Delta t}$$
 where Vmax is the highest

velocity of the medium.

We often impose a free surface boundary condition. This requires that the stress must vanish, or at least be a given function of time when a source is located at the free boundary.

Therefore, at $\alpha = 0$

$$6xx = PV^2 \frac{\partial U}{\partial x} = -p(t)$$

, where $\delta_{\chi\chi}$ is stress and ρH is a pressure source function.

Using an imaginary grid point at $\chi_{=}-3\chi$, we can write the above boundary condition as

$$\frac{U_3'' - U_1'''}{20 \times 10^{-10}} = \frac{-P''}{l_2 V_2^2}$$

where \mathcal{U}_{n}^{n} is displacement at $\chi=-2X$, and \mathcal{U}_{3}^{n} is the displacement at $\chi=2X$. Notice that when $p^{n}>0$, $\mathcal{U}_{3}^{n}=\mathcal{U}_{1}^{n}$, this is the free boundary condition.

At the interface between the two media, continuity of displacement and stress must be satisfied. Let \mathcal{U}_h be the displacement in the half-space and since there is no incoming wave from the half-space, $\mathcal{U}_k = \mathcal{H}e^{\frac{i\omega(t-\frac{\omega}{L})}{L_k}}$ where \mathcal{V}_k is the

velocity of the half-space. Hereafter the subscript h means half-space. The boundary conditions at f = f (boundary at half-space) are

$$U_J^n = U_h$$

$$\sigma_J^n = \sigma_h$$

Therefore.

$$\int V_J^2 \frac{\partial U_I^n}{\partial x} = \int_h V_h^2 \frac{\partial U_h}{\partial x} = -\int_h V_h \frac{\partial U_h}{\partial t}$$

$$= -\int_h V_h \frac{\partial U_J^n}{\partial t} , \text{ because}$$

$$\frac{\partial U_h}{\partial x} = \frac{-i\omega}{V_h} A e^{i\omega U_h^2 - \frac{X}{V_h}} = -\frac{1}{V_h} \frac{\partial U_h}{\partial t}.$$

Using a 3-point backward first derivative operator for the radiation boundary condition at $\int_{-\pi}^{\pi}$ can be written,

$$U_{J}^{n} = \frac{\int V_{J}^{2} (4U_{J-1}^{n} - U_{J-2}^{n})}{2\Delta \times (\frac{3\int_{J}V_{J}^{2}}{2\Delta \times} + \frac{\int_{R}V_{h}}{\Delta t})}$$

$$+ \frac{\int_{R}V_{h} U_{J}^{n-1}}{\Delta t (\frac{3\int_{J}V_{J}^{2}}{2\Delta \times} + \frac{\int_{R}V_{h}}{\Delta t})}.$$

Notice that when

$$f_h V_h \gg f_J V_J ,$$

$$U_J^m = U_J^{n-1} .$$

This is a rigid boundary condition, since initially all displacement is zero $(U_T' = 0.0)$.

$$U_{\mathcal{J}}^{n} = \frac{4}{3} \left(U_{\mathcal{J}-1}^{n} - U_{\mathcal{J}-2}^{n} \right)$$
, which is a free boundary condition.

(B) Voigt Solid

The inhomogeneous wave equation in a Voigt medium (White, 1965) is

Where β, α is the same as perfect elastic case and $\beta = \lambda' + \lambda \mu'$, which is attenuation term.

Using the same method applied in the perfectly elastic medium, the finite difference equation of the Equation 31 is

$$-\frac{h_{j}\beta_{j-\frac{1}{2}}}{2Dt} \mathcal{U}_{j-1}^{n+l} + \left\{ l + \frac{h_{j}(\beta_{j+\frac{1}{2}} + \beta_{j-\frac{1}{2}})}{2Dt} \right\} \mathcal{U}_{j}^{n+l} - \frac{h_{j}\beta_{j+\frac{1}{2}}}{2Dt} \mathcal{U}_{j+l}^{n+l}$$

$$= h_{j}\beta_{j+\frac{1}{2}} \mathcal{U}_{j+l}^{n} + \left\{ 2 - h_{j}(\beta_{j+\frac{1}{2}} + \beta_{j-\frac{1}{2}}) \right\} \mathcal{U}_{j}^{n}$$

$$+ h_{j}\beta_{j-\frac{1}{2}} \mathcal{U}_{j-l}^{n}, - \frac{h_{j}\beta_{j+\frac{1}{2}}}{2Dt} \mathcal{U}_{j+l}^{n+l}$$

$$+ \left\{ \frac{h_{j}}{2Dt} \left(\beta_{j+\frac{1}{2}} + \beta_{j-\frac{1}{2}} \right) - l \right\} \mathcal{U}_{j}^{n+l}$$

$$- \frac{h_{j}}{2Dt} \beta_{j-\frac{1}{2}} \mathcal{U}_{j-l}^{n+l}$$

$$(32)$$

where $h_{\bar{j}} = \frac{(\omega t)^2}{P_{\bar{i}}(\omega x)^2}$

Notice that when β is zero, Equation 32 is the same as Equation 30. When $\beta \neq 0$, the above equation is an implicit difference scheme, and its solution can be easily solved by the property of tri-diagonal matrix method (Richtmyer and Morton, 1967).

Balch (1970) showed that the stability condition is

The free boundary condition at 4=0 is

$$U_{1}^{n+1} = U_{3}^{n+1} + (U_{1}^{n-1} - U_{3}^{n-1})$$

$$+ \frac{2 \int_{2} V_{2}^{2} \Delta t}{(\lambda' + 2\mu')_{2}} (U_{3}^{n} - U_{1}^{n})$$

$$- \frac{4 \Delta x_{3} t}{\beta_{2}} P^{n}.$$

The radiation boundary condition at *= /axis

$$U_{J}^{n} = \frac{b}{(a+3b+3c)} \left(4U_{J-1}^{n} - U_{J-2}^{n}\right)$$

$$+ \frac{c}{(a+3b+3c)} \left(4U_{J-1}^{n} - U_{J-2}^{n} + U_{J-2}^{n-1} - 4U_{J-1}^{n-1} + 3U_{J-1}^{n-1}\right)$$

$$+ \frac{a}{(a+3b+3c)} U_{J}^{n-1}$$

where

$$a = \frac{\beta h}{\Delta t}$$

$$b = \frac{\beta h^2}{2\Delta x}$$

$$C = \frac{\beta J}{2\Delta x}$$

(C) Linear with Frequency Medium

The following sets of equations satisfy the condition that a first power dependency on frequency could be approximated over any limited frequency range (White, 1965).

Where

$$k = \lambda + 2\mu$$

 γ, β = attenuation constant.

In difference equation notation,

$$U_{j}^{n+l} = \frac{(\Delta t)^{2}}{l_{j} \Delta x} \left(\frac{5}{j+\frac{1}{2}} - \frac{6}{j-\frac{1}{2}} \right) + 2U_{j}^{n} - U_{j}^{n+l}$$

$$6_{j+\frac{1}{2}}^{n} \left(1 + \frac{l_{j+\frac{1}{2}}}{\Delta t} \right) = k_{j+\frac{1}{2}} \frac{l_{j}^{n} - U_{j}^{n}}{\Delta x} + \frac{l_{j+\frac{1}{2}}}{\Delta t} \frac{6^{n+l}}{j+\frac{1}{2}}$$

$$+ (k_{j}^{n}) \frac{U_{j+1}^{n} - U_{j}^{n} - U_{j}^{n} - U_{j}^{n}}{\Delta x \Delta t} + U_{j}^{n+l}$$

$$(34)$$

From the above coupled equation, we can compute explicitly the displacement at the (n+1) time step using the previous displacements and stresses.

The free boundary condition is

$$u_{1}^{n+1} = u_{3}^{n+1} - u_{3}^{n-1} + u_{1}^{n-1} + \frac{2at}{\beta_{2}} (u_{3}^{n} - u_{1}^{n})$$

$$- \frac{4adx}{\beta_{2}V_{2}^{2}\beta_{2}} \left\{ \gamma_{2} (p_{2}^{n} - p_{2}^{n-1}) + at p_{2}^{n} \right\}$$

The radiation boundary condition is

Examples and Discussions

To study the accuracy and feasibility of an explicit difference scheme for the solution of an inhomogeneous perfectly elastic wave equation, we examined the following simple model, which consists of two different perfectly elastic bars in welded contact, Figure 8.

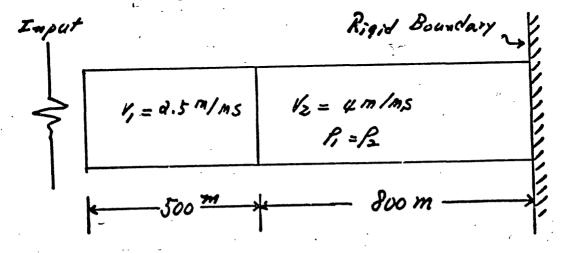
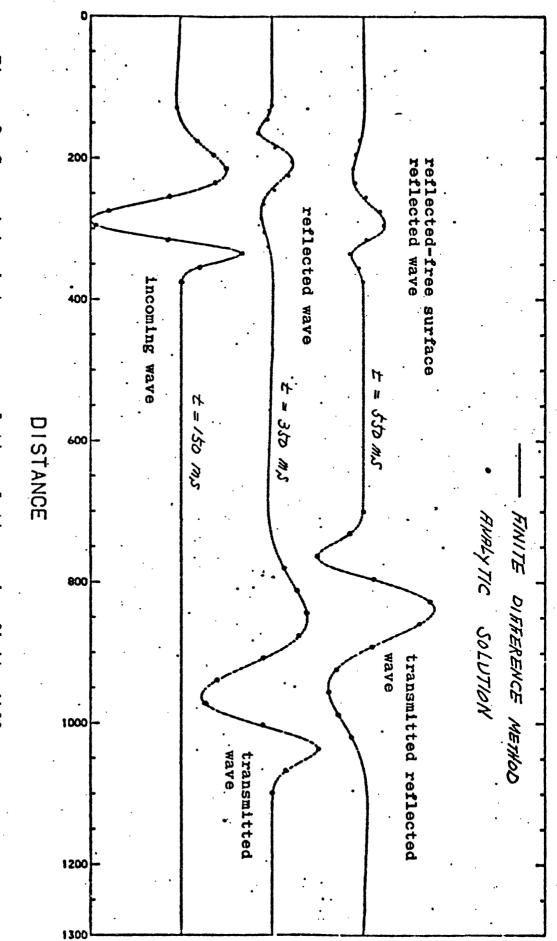


Figure 8. Geometry for one-dimensional perfectly elastic model.

The external boundary conditions for this model are the displacement field at one end and a rigid boundary at the other end. We computed the displacement field along the bar at t = 150 ms, t = 350 ms, and t = 550 ms.

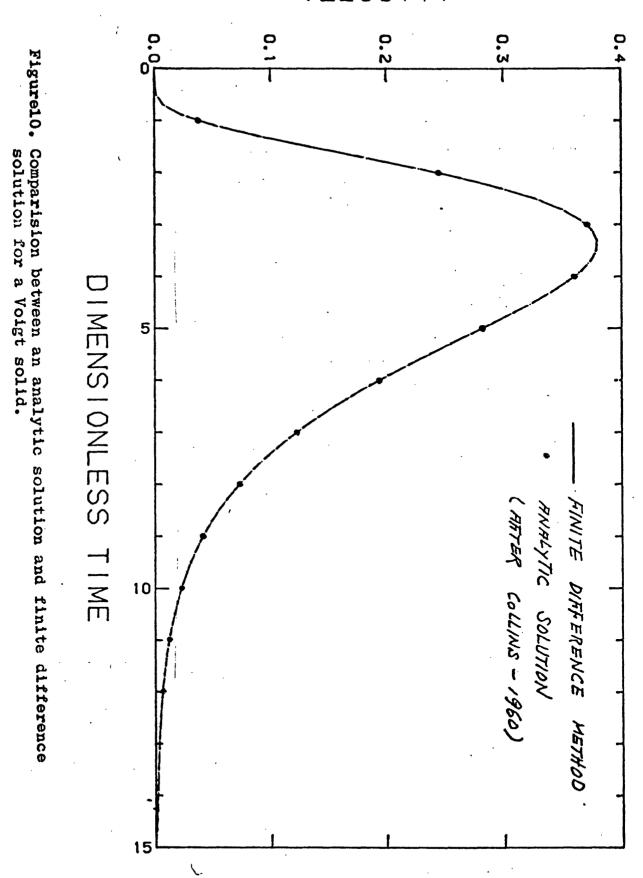
The solid line in Figure 9 represents the solution using a finite difference approach and the dots represent the analytic solution. The free surface reflected wave looks a little delayed. But overall agreement between two solutions is excellent.

To test the computer algorithm for the Voigt solid, we compared our result with a known analytic solution derived by Collins (1960). For a pressure impulse at the free surface of a homogeneous half-space, we calculated the velocity wave form at a dimensionless distance $\chi=4$ with respect to dimensionless time γ . The dimensionless distance and time are defined as


$$X = \frac{x}{V\varepsilon}$$
, $T = \frac{t}{\varepsilon}$,

where

$$\mathcal{E} = \frac{\lambda' + 2\mu'}{\lambda + 2\mu}.$$


The points in Figure 10 were calculated from Collin's analytic solution, and the solid curve was computed by the finite difference method. The agreement between the two solutions is excellent.

To examine the computer program for the linear with frequency medium, we computed the attenuation of longitudinal wave versus frequency. Figure 11 shows the attenuation of longitudinal waves versus frequency for a semi-infinite medium whose longitudinal velocity is 7100 ft/sec; shear velocity is 2860 ft/sec γ is 0.345 ms, and β = 0.375 ms. This figure shows that attenuation is nearly proportional to the first power of frequency in the limited frequency range.

31

Figure 9. Comparision between an analytic solution and a finite difference solution for a perfectly elastic model.

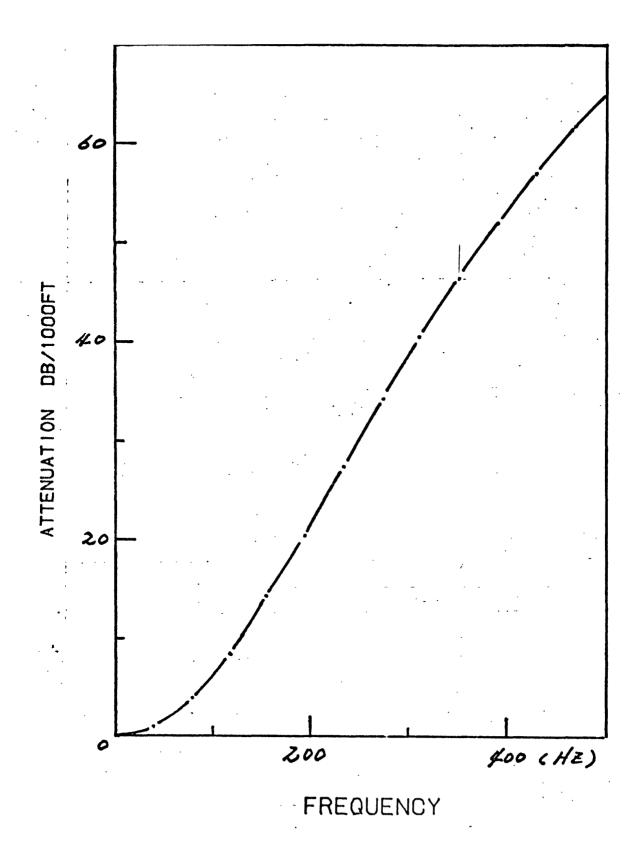
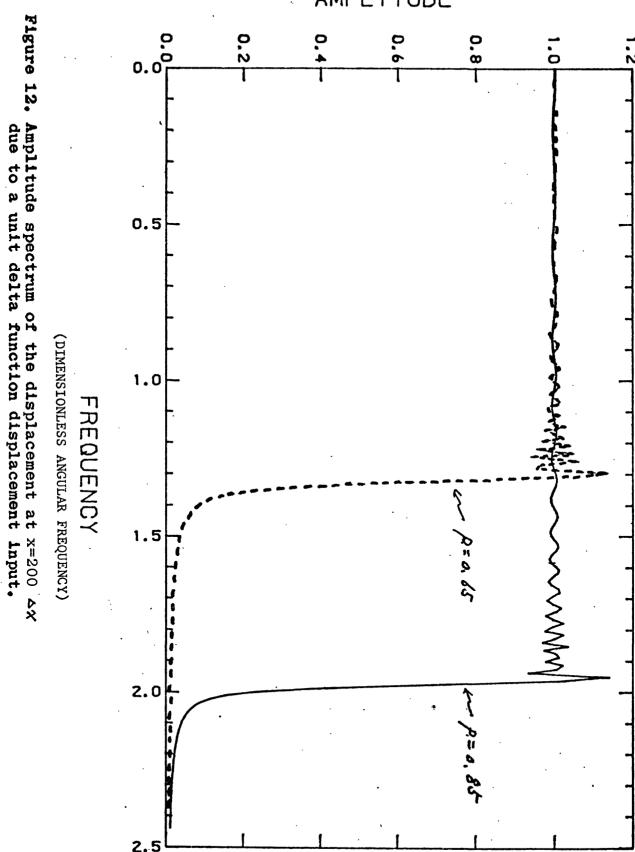


Figure 11. Attenuation of longitudinal waves versus frequency.


One of the problems encountered in solving an inhomogeneous wave equation by a finite difference scheme is that the ratio is constant throughout the medium. The ratio controls the accuracy of the propagation of a given input wavelet in a finite difference method. If $(\Delta t/\Delta x)^{-1}$ is the same as the speed of the medium, the propagation error is zero-this means that if a delta function of a displacement is introduced into a finite difference equation for an infinite one-dimensional medium, it propagates as a delta function without tails or precursors, as the theory predicts. However, if DX/Dt is not the same as medium speed, precursors and tails appear and the results are distorted. The larger ax/at compared with V (medium velocity) is, the more the propagation error is. This kind of error is more severe than the local truncation error and round-off error. Therefore, some method must be developed for the estimation of this propagation error.

The amplitude spectrum of the Fourier transform of a delta function is equal to one for all frequencies. Knowing this, we put a delta function displacement into our finite difference computer model and computed the amplitude spectrum of the resultant displacement at a certain point.

Figure 12 shows the amplitude spectrum of the displacement at $\chi = 200\,\text{eV}$ with two values of ρ , which is defined as $\rho = V \text{eV}/\text{eV}$. Figure 13 shows the amplitude spectrum at $\chi = 100\,\text{eV}$. Both figures clearly show that the larger ρ is, the more accurate the amplitude response is. Also the shorter the propagation distance is, the more accurate the response is.

Therefore, from a set of curves of this kind, we can estimate the maximum frequency which may be contained in an input wavelet, if the wavelet is to be propagated without much distortion. With this maximum frequency, a stability condition, and some criteria for the local truncation error of the difference operator, we can choose the optimum value of the axist ratio for a given numerical model.

AMPLITUDE

0.0r 0.2 0.6 0.8 Figure 13. Amplitude spectrum of the displacement at $x=100~\Delta x$ due to a unit delta function displacement input. 1.0 0.5 (DIMENSIONLESS ANGULAR FREQUENCY) 1.0 FREQUENCY 1.5 2.0 2.5

TWO-DIMENSION WAVE PROPAGATION

The previous chapter deals with one-dimensional wave propagation through horizontally layered media. This approach provides reasonable answers for many problems encountered in geophysical exploration. But it has limitations. For example, it cannot handle such problems as predicting the converted wave from a boundary, the geometrical spreading effect, or a non-normal incidence wave. Therefore, to make a realistic seismic model, it is necessary and important to study the solution of a two-dimensional elastic wave equation.

Presently, most of the two-dimensional modeling techniques use ray tracing. To calculate an arrival time for the seismic signal for a normal or nearly vertical ray path for an arbitrary subsurface, the ray theory may provide a reliable answer. Also this technique can solve some of the problems such as geometrical spreading, and mode conversion for a simple model. But present two-dimensional modeling techniques cannot fully solve the diffraction problem, all kinds of mode conversion, and true amplitude and shape of the seismic signal.

One way to eliminate the above problems, as far as theory is concerned, is to compute the entire elastic wave field by a finite difference method. Currently, numerous authors are studying the solution of an elastic wave equation by a finite difference method (Aboudi, 1971; Alford and others, 1974; Alterman and Aboudi, 1970; Alterman and Karal, 1969). Theoretically, a finite difference equation can give an exact solution of the elastic wave equation as the sampling interval both in space and time approach zero for any complex geological subsurface.

Thus, the purpose of this section is to study the feasibility and applicability of this finite difference approach. If subsurface structure is simple, it seems to be more reasonable to solve a homogeneous wave equation with appropriate boundary conditions at each boundary by a finite difference method. However, for a complex geological model to fit a boundary condition at each boundary is rather complicated. So we set out to solve an inhomogeneous elastic wave equation, which contains all interface boundary conditions in itself, by a finite difference scheme.

Difference Equation

Two-dimensional inhomogeneous ealstic wave equation in an orthogonal cartesian coordinates x and y can be written as

$$\int \frac{\partial^{2} u}{\partial t^{2}} = HU + \frac{\partial}{\partial x} (\lambda + 2\mu) \frac{\partial u}{\partial x} + \frac{\partial \lambda}{\partial x} \frac{\partial w}{\partial y}
+ \frac{\partial \mu}{\partial y} (\frac{\partial w}{\partial x} + \frac{\partial u}{\partial y})
+ \frac{\partial^{2} u}{\partial x} = HW + \frac{\partial}{\partial y} (\lambda + 2\mu) \frac{\partial u}{\partial y} + \frac{\partial \Lambda}{\partial y} \frac{\partial u}{\partial x}$$

$$+ \frac{\partial u}{\partial x} (\frac{\partial w}{\partial x} + \frac{\partial u}{\partial y})
+ U = (\lambda + 2\mu) \frac{\partial^{2} u}{\partial x^{2}} + \lambda \frac{\partial^{2} u}{\partial x \partial y} + \mu (\frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial x \partial y})
+ PF$$

$$HW = (\lambda + 2\mu) \frac{\partial^{2} w}{\partial y^{2}} + \lambda \frac{\partial^{2} u}{\partial x \partial y} + \mu (\frac{\partial^{2} w}{\partial x^{2}} + \frac{\partial^{2} u}{\partial x \partial y})
+ PF$$

where

?: density

> M:Lame constants

horizontal displacement vertical displacement

F : x and y-component of body force.

Using a central difference approximation for all of the derivatives, we can write Equation 35 as the following coupled difference equation, assuming 2x=0y for simplicity:

$$\begin{aligned} W_{i,j}^{n,n} &= \widehat{HW} + 2W_{i,j}^{n} - W_{i,j}^{n} \\ &+ \frac{h_{i,j}}{4} \left\{ (\lambda + 2w)_{i,j+1} - (\lambda + 2w)_{i,j+1} \right\} (W_{i,j+1}^{n} - W_{i,j+1}^{n}) \\ &+ \frac{h_{i,j}}{4} \left\{ \lambda_{i,j+1} - \lambda_{i,j+1} \right\} (W_{i,i,j}^{n} - W_{i,i,j}^{n}) \\ &+ \frac{h_{i,j}}{4} (M_{i,i,j} - M_{i,i,j}) (W_{i,i,j}^{n} - W_{i,i,j}^{n}) \\ &+ \frac{h_{i,j}}{4} (M_{i,i,j} - M_{i,i,j}) (W_{i,i,j}^{n} - W_{i,i,j}^{n}) \end{aligned}$$

$$\widehat{HU} = h_{i,j} (\lambda + 2\mu)_{i,j} (U_{i+1,j}^{n} - 2U_{i,j}^{n} + U_{i+1,j}^{n}) + \frac{h_{i,j}}{4} (\lambda + \mu)_{i,j} (W_{i+1,j}^{n} - W_{i+1,j+1}^{n} - W_{i+1,j+1}^{n} + W_{i+1,j+1}^{n}) + h_{i,j} \mu_{i,j} (U_{i,j+1}^{n} - 2U_{i,j}^{n} + U_{i,j+1}^{n})$$

$$+ (st)^{2} \widehat{H}_{i,j}^{n}$$

$$\widehat{HW} = h_{ij} (\lambda + 2\mu)_{ij} (\omega_{ij+1}^{n} - 2\omega_{ij}^{n} + \omega_{ij+1}^{n}) + \frac{h_{ij}}{4} (\lambda + \mu)_{ij} (U_{i+1j+1}^{n} - U_{i+1j+1}^{n} - U_{i+1j+1}^{n} + U_{i+1j+1}^{n}) + h_{ij} \mu_{ij} (\omega_{i+1j}^{n} - 2\omega_{ij}^{n} + \omega_{i+1j+1}^{n}) + h_{ij} \mu_{ij} (\omega_{i+1j}^{n} - 2\omega_{ij}^{n} + \omega_{i+1j+1}^{n}) + (ot)^{2} \widehat{H}_{ij}$$
where
$$h_{ij} = (\Delta t)^{2} / (R_{ij} - 2\kappa^{2}).$$

The finite difference Equations 36 and 37 are explicit, so that the displacement at the (n+1)-th time step can be computed using the previous n-th and (n-1)-th time step displacements and a body force term.

The difference equations have physical meaning only when they are stable. A sufficient stability condition may be derived by considering the homogeneous difference equation. Aboudi(1971) showed that the difference scheme is stable when

where α is p-wave velocity and β is s-wave velocity. So, in the inhomogeneous case, we can determine by the maximum value of $\sqrt{\alpha + \beta}$ of the medium.

The free boundary condition at y=0 is

$$\begin{aligned}
\delta xy &= \mu \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial y} \right) = T_X \\
\delta xy &= \lambda \left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial y} \right) + 2\mu \frac{\partial w}{\partial y} = T_Y
\end{aligned}$$

where \mathcal{T}_{x} and \mathcal{T}_{y} are given surface tractions and \mathcal{T}_{xy} and \mathcal{T}_{yy} are components of stress.

As in the one-dimensional case, we introduced an imaginary grid point at $\nearrow = - \triangle y$ to compute the first derivative. In difference equation notation, the above boundary condition can be written as

$$U_{i,1}^{n} = U_{i,3}^{n} + \frac{\partial y}{\partial x} \left(U_{i+1,2}^{n} - U_{i-1,2}^{n} \right) - \frac{2\partial y}{\partial x} T_{x}^{n}$$

$$W_{i,1}^{n} = \frac{\lambda}{\lambda + 2\mu} \frac{\partial y}{\partial x} \left(U_{i+1,2}^{n} - U_{i-1,2}^{n} \right) + W_{i,3}^{n} - \frac{2\partial y}{\lambda + 2\mu} T_{y}^{n}.$$
(38)

When there is no surface traction, Equation 38 serves as a free boundary condition.

At the edge of the model, we provided a rigid boundary condition, which will produce unwanted "artificial" reflections. We tried to implement radiation boundary condition, but have as yet not been successful.

In the inhomogeneous finite difference formulation, every elastic constant (velocity and density) must be a continuous function of grid points. Thus, all discontinuous variation of elastic constants must be changed into continuous ones. If the continuous variation of elastic constants is sufficiently abrupt in the inhomogeneous formulation, we can approximately treat this continuous interface as a discontinuous interface. Figure 14 shows how we treat this discontinuous interface in the inhomogeneous difference scheme.

Most of the authors (Alford and others, 1974, Alterman and Karal, 1969) used an analytic solution in an infinite

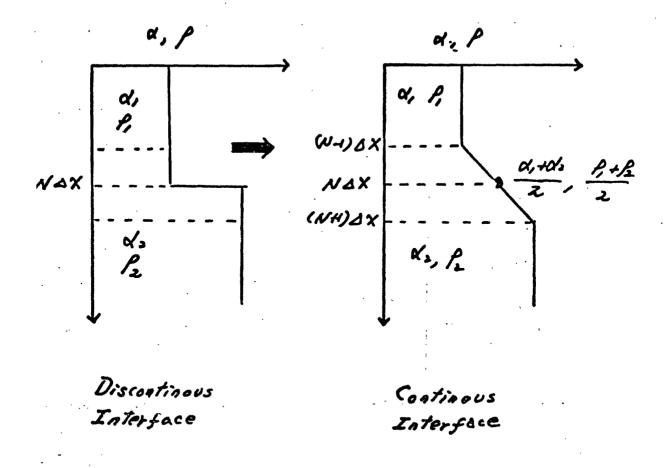


Figure 14. Elastic constant transition for inhomogeneous formulation.

medium around a source region to initiate an elastic disturbance. Alterman and Karal (1969) discussed how to fit a boundary condition around the source using an analytic solution. In this study, we used an initial disturbance by a finite difference method, which has been fully explained by Aboudi (1971). So we will not discuss this simulation of seismic source in a finite difference scheme here.

Grid Dispersion Relation

When we perform numerical calculations of wave propagation, using a finite difference equation, a propagating pulse on a discrete grid shows dispersion (Alford and others, 1974). This phenomena, called grid dispersion, can be examined by considering phase velocity as a function of frequency. The following derivation of grid dispersion for the displacement is based upon the plane wave propagation in a whole space by a finite difference scheme.

Let
$$\vec{D}$$
 be the plane wave solution such that
$$\vec{D} = \vec{D} e^{i(\omega t - kz(\omega \theta - ky Rin\theta))}$$
(39)

We substitute Equation 39 into Equations 36 and 37, retaining only the homogeneous terms. Then,

$$4 \overrightarrow{D}_{0} \operatorname{din}^{2}(\frac{\omega o t}{2}) = 4 \{A \} E^{2} \overrightarrow{D}_{0} \operatorname{din}^{2}(\frac{o \times \omega o A}{2}) + 4 \{B \} E^{2} \overrightarrow{D}_{0} \operatorname{din}^{2}(\frac{o \times \omega o A}{2}) + 5 \{C \} \overrightarrow{D}_{0} E^{2} \operatorname{din}(o \times \omega o A) \operatorname{din}(o \times \sin o A)$$

where
$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} \alpha^2, & 0 \\ 0, & \beta^2 \end{bmatrix} \qquad \begin{bmatrix} \beta \end{bmatrix} = \begin{bmatrix} \beta^3, & 0 \\ 0, & \alpha^2 \end{bmatrix} \\
\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} 0, & x^2 - \beta^2 \\ \alpha^2 - \beta^2, & 0 \end{bmatrix} \qquad \underbrace{\mathcal{E}} = \frac{\Delta t}{\Delta x}$$
Let
$$\frac{\lambda \Delta x \cos \theta}{Z} = \rho \qquad \frac{\lambda \cos \rho \cos \theta}{Z} = \frac{\theta}{2}$$

$$\lambda_1 = \mathcal{E}^2(x^2 \sin^2 \rho + \beta^2 \sin^2 \theta)$$

$$S_{1} = E^{2}(\alpha^{2} \sin^{2} p + \beta^{2} \sin^{2} g)$$

$$S_{2} = E^{2}(\beta^{2} \sin^{2} p + \alpha^{2} \sin^{2} g)$$

$$S_{3} = E^{2}(\alpha^{2} \beta^{2}) \sin p \sin g \cos p \cos g.$$

Then, to get non-trivial solution for \overline{P} , the following determinant should be 0.

$$\ln^{2}\left(\frac{\omega o t}{2}\right) - 5, \quad 5_{3}$$

$$= 0 \quad (40)$$

$$\sqrt{3} \quad \sin^{2}\left(\frac{\omega o t}{2}\right) - 5_{2}$$

The Equation 40 can be written as

The solution E_{1} or E_{2} is

$$E_{1} = \frac{(S_{1}+S_{2}) + \sqrt{(S_{1}-S_{2})^{2} + 4S_{2}^{2}}}{Z}$$

$$E_{2} = \frac{(S_{1}+S_{2}) - \sqrt{(S_{1}-S_{2})^{2} + 4S_{2}^{2}}}{Z}$$

Therefore,

$$\frac{\omega o t}{2} = \sin^4 \sqrt{E_1} \quad \text{or} \quad \lim^4 \sqrt{E_2} \tag{41}$$

The Equation 41 provides us with a relation between grid dispersion and the sampling interval. Examining the limiting case (i.e., $\Delta x \rightarrow 0$, $\Delta t \rightarrow 0$), $\omega c / 2 = \Delta t / E$, gives us a grid dispersion relation for the longitudinal wave and $\omega c t / 2 = \Delta t / E$ gives us a grid dispersion relation for the shear wave.

Grid dispersion relation for the longitudinal wave is as follows:

$$Q_{K} = \frac{C_{p}}{C_{0}} = \frac{\omega}{dk} = \frac{2 \sin^{4}/E}{dk ot}$$

where C_0 is the phase velocity at zero frequency and C_p is the phase velocity at frequency ω .

Define

Then.

$$Q_{\alpha} = \frac{q \sin^{-1} \sqrt{E_{I}}}{p \pi}$$

where G is the number of grid points per wave length.

Like the p-wave grid dispersion relation, the s-wave grid dispersion relation is

$$Q = \frac{\omega}{\beta k} = \frac{G \, \text{Rin}^{1} \sqrt{E_{2}}}{P \, \text{T}}$$

Examples and Discussions

Grid dispersion is one of the potential sources of trouble in finite difference calculations. So it is very important to study this kind of error in numerical modeling by finite difference schemes.

Figure 15 and Figure 16 show the normalized p-wave phase velocity for different propagation angles as a function of grid points per wave length, where

p-wave phase velocity/zero frequency p-wave phase velocity

f: number of grid points/wave length

&: propagation angle with respect to the grid

$$P = \alpha^{\Delta t}/\Delta x$$

$$T = \beta^{\Delta}/\alpha^{\Delta}.$$

From Figures 15 and 16, we can say that:

(1) The larger the value of p becomes, the smaller the grid dispersion error becomes.

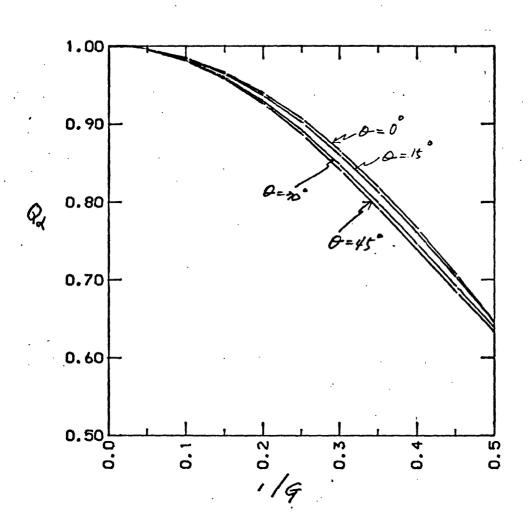


Figure 15. P-wave grid dispersion relation for p-0.3 and r-0.

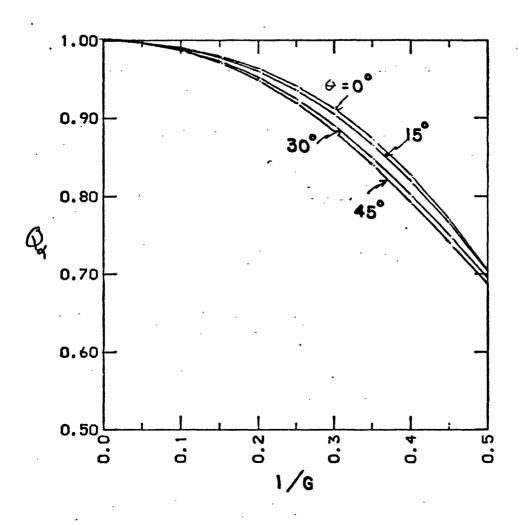


Figure 16. P-wave grid dispersion relation for p=0.7 and r=0.

- (2) If 1/G is less than 0.05, this type of error is almost independent of p, and its phase velocity is nearly that of zero frequency p-wave phase velocity.
- (3) Propagation angle is a minor factor for the p-wave grid dispersion error.

Figures 17 and 18 show the grid dispersion relation for the s-wave propagation, where

: s-wave phase velocity/zero frequency s-wave phase velocity.

From Figure 17 and Figure 18, we observe that:

- (1) As the value of A/Atapproaches the s-wave velocity, the s-wave grid dispersion error becomes smaller.
- (2) If 1/G is less than 0.05, this type of error is almost independent of p, and its phase velocity is nearly that of the zero frequency s-wave phase velocity.
- (3) The grid dispersion is largely dependent on the angle of propagation.

Therefore, for a given 4/4 ratio, which must satisfy the stability condition, if the value of 1/G is nearly 0.05 for both p-wave and s-wave, we may not expect severe grid dispersion errors in a finite difference scheme.

A point source approximation in a finite difference scheme is described by Aboudi (1971). Using his temporal and spacial dependence of a point source, we compared the displacement field in a whole space computed by an analytic solution with a finite difference solution. Figure 19 shows a radial displacement at x = 54x, and x = 204x. The consistant discrepancy between two solutions is caused by the finite sampling interval and the ratio of grid size to the pulse width of the input source function. Actually, in this finite difference scheme, any theoretical point source is approximated by an extended source (in this example, the source region is extended by 40% and 44% in x- and y-direction respectively, which is the cloest numerical approximation to a point source). For the further discussions of these kind of extended source compared with point sources, the readers may consult Alterman and Aboudi (1970).

Figure 20 shows the radial displacement at $\chi=10.4\chi$, $\theta=0$ and $\theta=37$ ° in an elastic whole space. One of the displacement is reversed in sign. We cannot see any noticeable differences between these two displacements. So we can say that, in this particular example, the angular dependence of the propagation error of a symmetric point source is

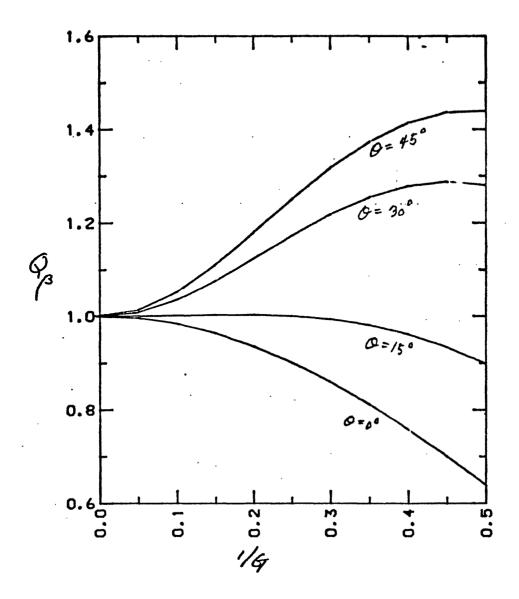


Figure 17. S-wave grid dispersion relation for p=0.3 and r=0.16.

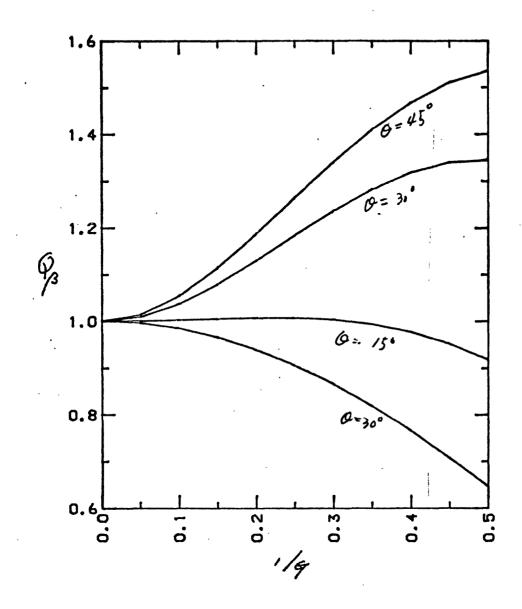
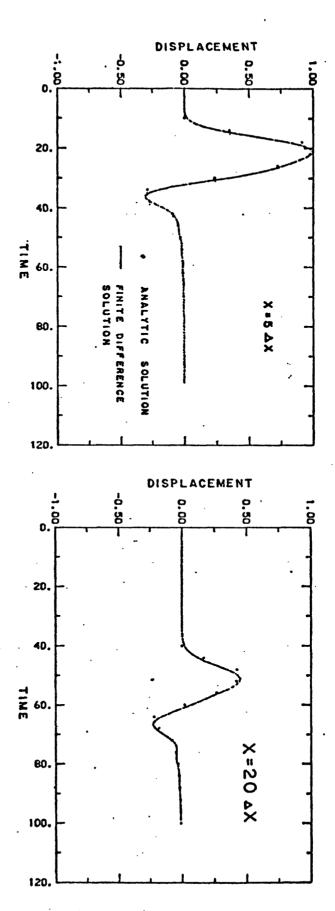



Figure 18. S-wave grid dispersion relation for p=0.7 and r=0.16.

Figure 19. Radial displacement at x=5 α X and x=20 α X in a whole space.

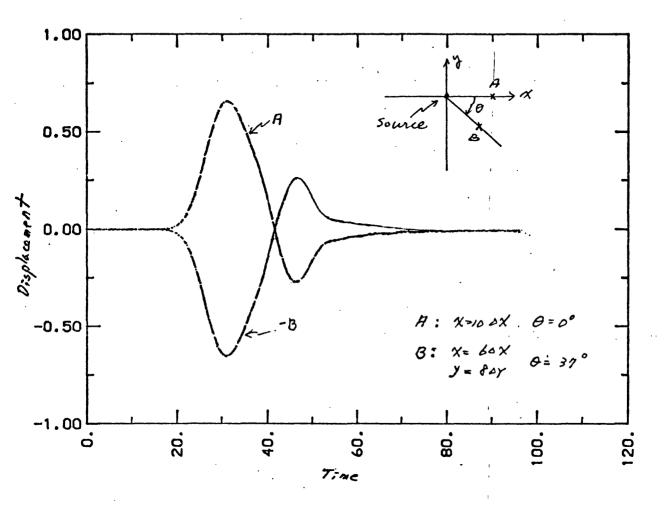


Figure 20. Radial displacement at $\varphi=\varphi$ and $\varphi=\gamma$. The negative value at $\varphi=\gamma$ was plotted for the comparison of the two displacements.

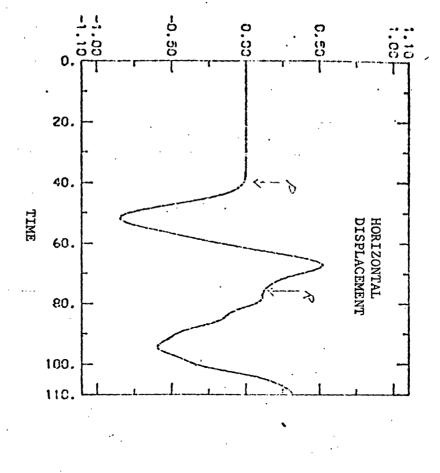
negligible compared with the discrepancy between the analytic solution and the finite difference solution. In general, it is difficult to compare these two types of error. But it confirms that propagation angle is a minor factor for the p-wave grid dispersion error.

Figure 21 shows vertical and horizontal displacements in an elastic half-space at x=204x, y=0. An explosive source is located at x=0, y=20x. We can clearly see two distinct arrivals; a direct compressional wave (p) and Rayleigh wave (R). We can expect a surface generated shear wave in addition to p and R. But, this arrival time is near the Rayleigh wave arrival time, so it is not seen clearly in this example.

The geometry and parameters of the vertical fault model are shown in Figure 22. Figure 23 shows the vertical displacement on the free surface at various geophone positions. Each trace is normalized separately, and the normalization values are shown at the edge of the Figure 23. Using ray theory, the arrival times for different wave types are also shown in Figure 23, where

P: direct p-wave arrival

D: diffracted p-wave arrival


PP: bottom reflected p-wave arrival.

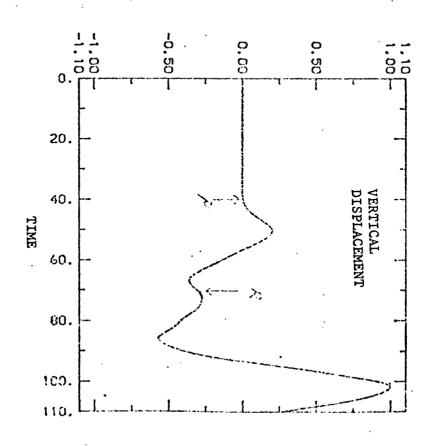

The amplitude decay of the direct p-wave arrivals follows the you law, the theoretical prediction. The quantitative analysis of the later arrivals are difficult, so we did not investigate the amplitude of the later arrivals. However, the arrival times are in good agreement with ray-theoretical arrival times.

Figure 24 shows the vertical displacement at the free surface for a vertical fault model, whose parameters are exactly the same as the parameters of Figure 22 except the upper medium is a Poisson's solid (i.e., $\lambda > \mu$) instead of a fluid.

Like Figure 23, each trace is normalized separately, and its normalization value is shown at the edge of that figure. Compared with Figure 23, in addition to P,PP,D, we can see the large amplitude surface wave after the first p-wave arrival and converted s-wave(reflected at the top of the fault). Due to the surface wave development along the free surface, its amplitude decay is quite different from Figure 23.

Figure 21. Vertical and horizontal displacements on the free surface of an elastic half-space.

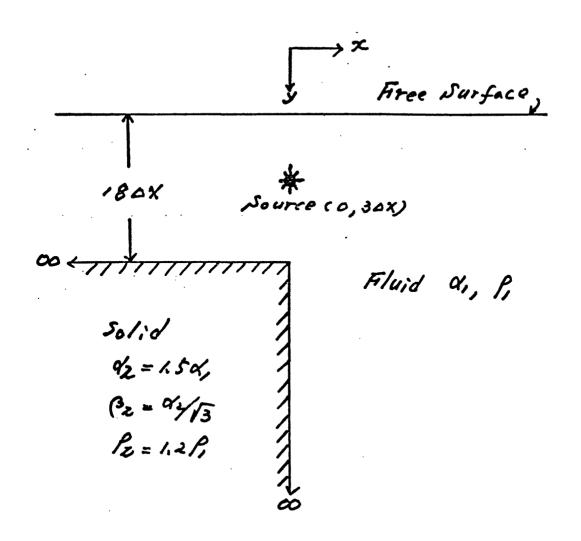


Figure 22. Geometry for a vertical fault model.

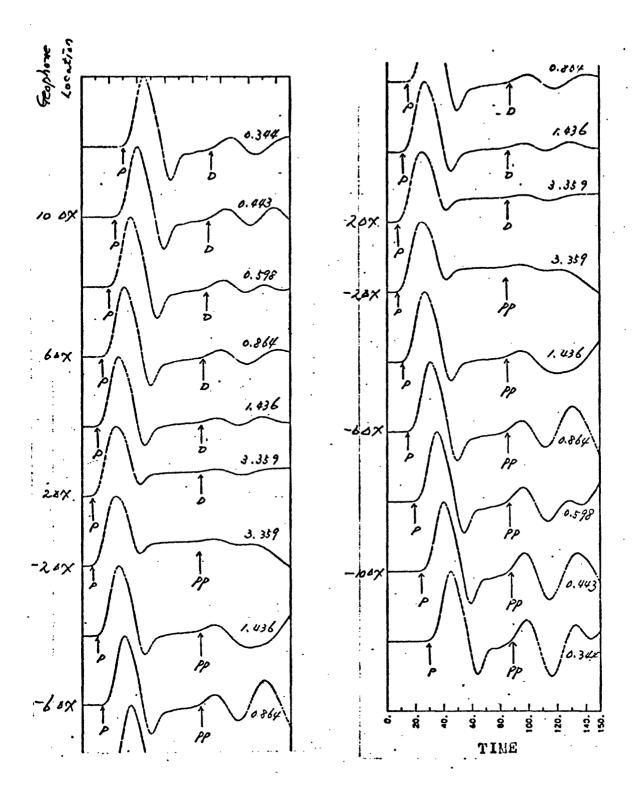


Figure 23. Vertical displacement on the free surface for a vertical fault model, embedded in a fluid.

Figure 24. Vertical displacement on the free furface for a vertical fault model embedded in a solid.

Figure 25 shows the geometry for a one-layered half-space model. The vertical and in-line horizontal motions at the free surface are shown in Figures 26a and Figure 26b respectively. with rav-theoretical travel times indicated for selected arrivals. The converted s-wave (PS-reflection) is distinctly visible on both horizontal and vertical motions. The PS-reflection at short ranges is stronger on the horizontal motion than on vertical motion. The propagation of P3-reflection at long ranges is faster than expected, which is caused by the grid dispersion effect. We can see the dispersed wave train at the tail of the direct p-wave arrival, particularly on the horizontal motion. The sampling interval used in this computation $\circ t = 2$ ms. and $4 \times = 25$ ft. Using these values. p=0.48 for the upper medium. We did not study the frequency content of the propagating pulse. So it is difficult to estimate, quantitatively, how much the grid dispersion effect on the dispersive wave train might be. However, the dispersed wave train is caused possibly by the grid dispersion effect. This grid dispersion error, like other types of error, might be increased as the number of iterations increases. On the vertical motion, the phase change of the totally reflected p-wave (beyond the critical angle) is also visible.

Due to the truncation of the model, we can see the artificial reflections around 0.5 sec in Figures 26a and 26b. This is the one of the major problems in using finite difference whemes for a realistic numerical modeling. Unless a radiation boundary condition at the edge of the model is implemented, we must always expect these unwanted artificial reflections.

Figure 27 shows the geometry of a localized inhomogeneity embedded in an elastic half-space. The p-wave velocity of the half-space is 7000 ft/sec and p-wave velocity of the inhomogeneity is 4000 ft/sec. Vertical and horizontal motions on the free surface are shown in Figure 28a and Figure 28b respectively with the identifiable reflections around the epicenter. The later part of the seismogram is severely contaminated by the arificial reflections from the edge of the model. The strong horizontal motion at short ranges, around 0.32 second, is quite comparable with the vertical motion. This strong herizontal motion is a ghost diffracted shear wave. The extension of the p-wave reflection from the top layer beyond the ray-theoretical reflection limit is p-wave diffraction.

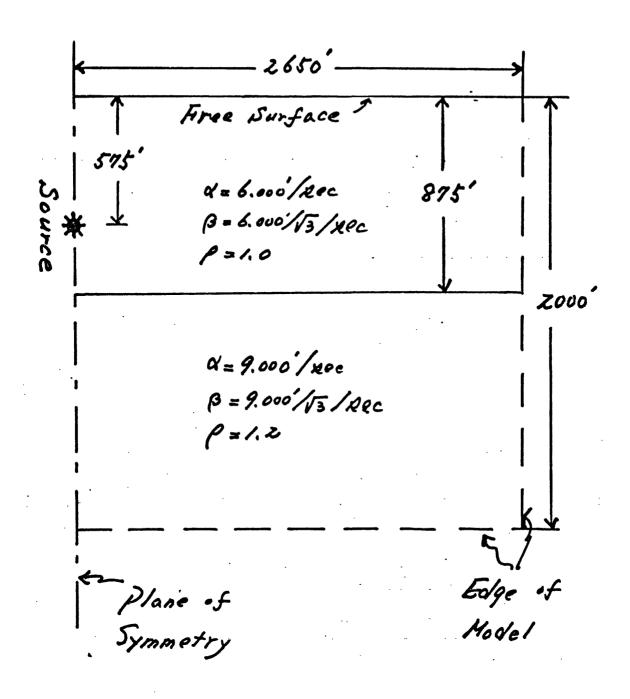
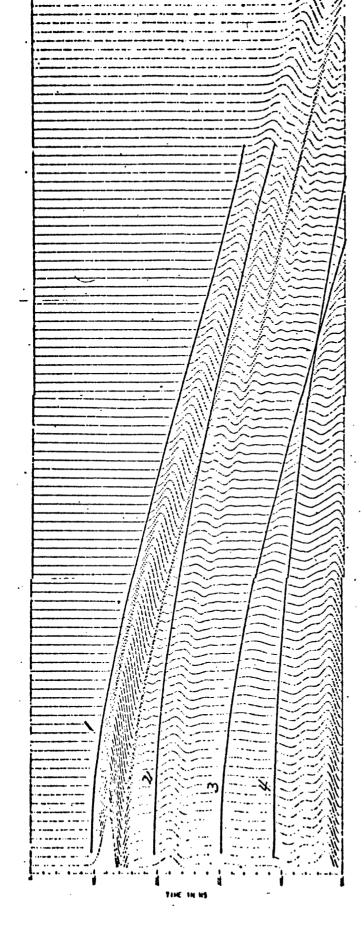
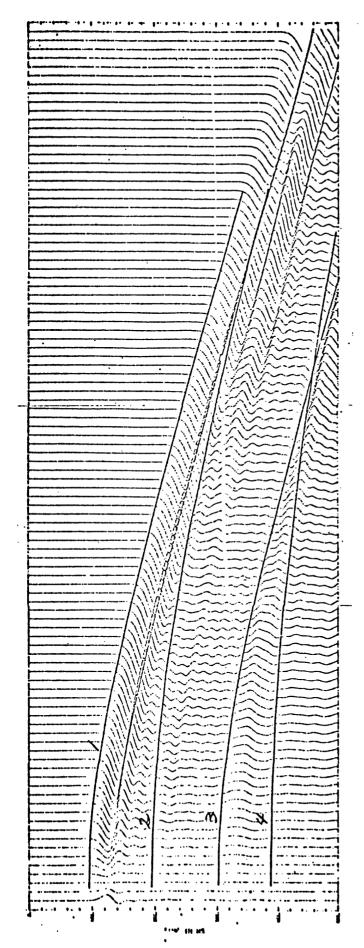




Figure 25. Geometry for one-layered half-space model.

#3 Ghost p-wave reflection. Ghost s-wave reflection. #4 Reflected p-wave. Direct p-wave. #2 #1

Figure 26a. Vertical displacement on the free surface for one-layered half-space model.

Ghost s-wave reflection. Ghost p-wave reflection. #3 #4 Reflected p-wave. Direct p-wave.

#2

ť

Figure 26b. In-line horizontal motion on the free surface for one-layered half-space model.

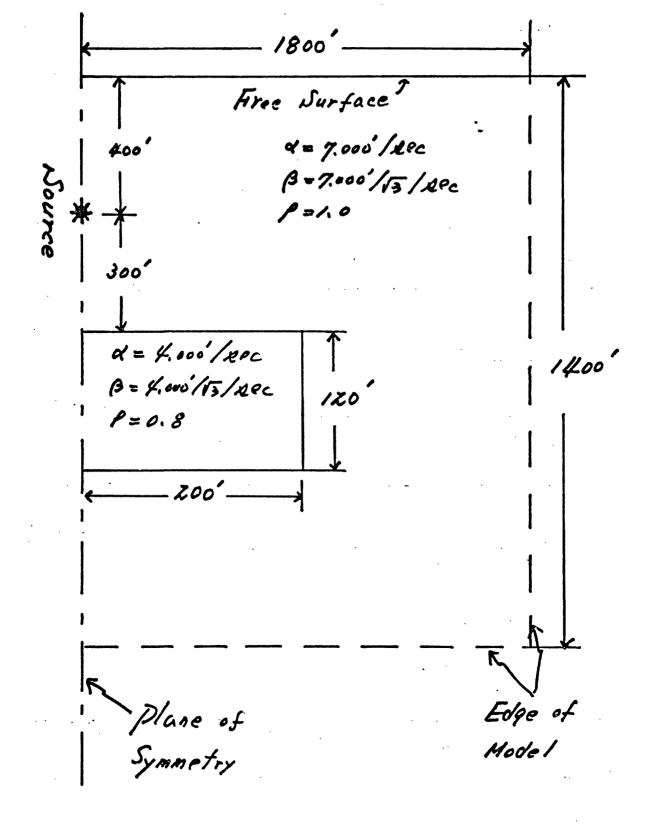


Figure 27. Geometry for localized inhomogeneity model.

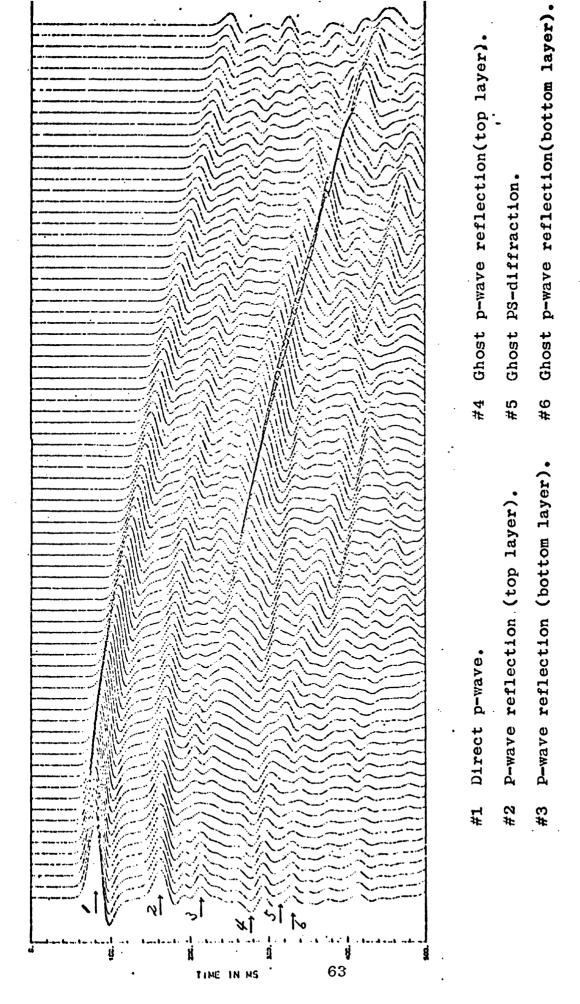


Figure 28a. Vertical displacement on the free surface for localized inhomogeneous model.

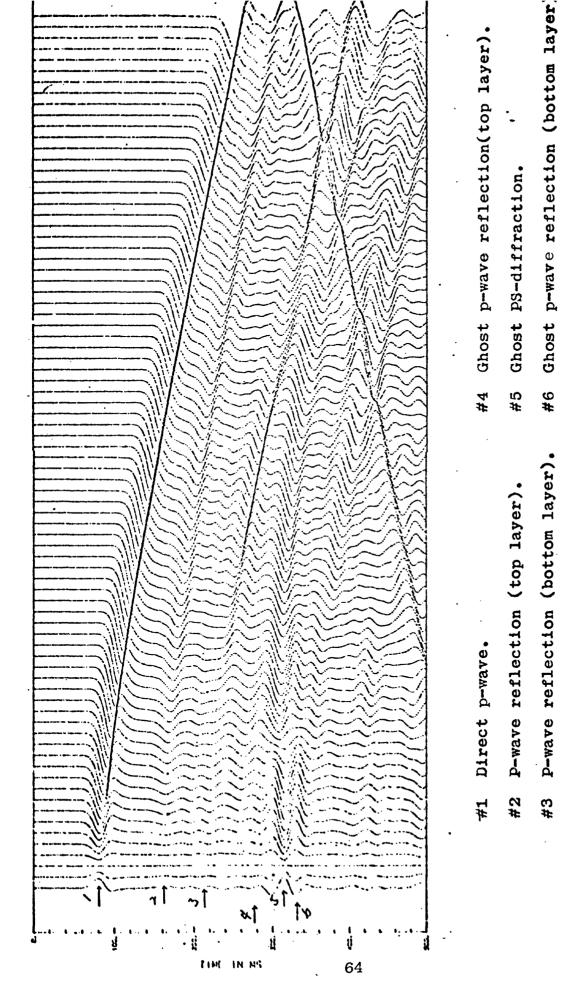


Figure 28b. In-line horizontal displacement on the free surface for localized inhomogeneous model.

THIN BED REFLECTION

The reflection and transmission amplitudes of an incident longitudinal wave due to a thin bed is of considerable interest in stratigraphic oil trap studies. The purpose of this section is to exhibit the calculated energy partition of the incident seismic signal due to a thin bed by varying the angle of incidence and frequency.

Theory

The basic theory for this problem can be found elsewhere (Bath. 1968, Haskell, 1953). We shall merely summarize the final results here and make some important definitions.

Figure 29 illustrates the problem.

Let

: longitudinal wave velocity of the i-th medium

β:: shear wave velocity of the i-th medium

f: density of the i-th medium

: dilatational displacement potential of the

i-th medium for the down-going wave

#: dilatational displacement potential of the

i-th medium for the up-going wave

Y: rotational (i.e. shear wave) displacement potential of the i-th medium for the down-going

wave rotational displacement potential of the i-th medium for the up-going wave.

From the Haskell's matrix method, we can compute all f', f'', f'', and f'' in terms of incident potential f'.

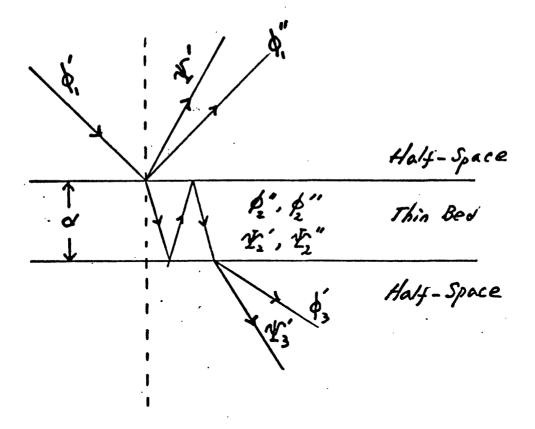


Figure 29. Thin bed reflection and transmission.

Define

$$R_{p} = \frac{\phi''}{\phi'}$$

$$R_{s} = \frac{\gamma''}{\phi'}$$

$$T_{p} = \frac{\phi''}{\phi'}$$

$$T_{s} = \frac{\gamma''}{\phi'}$$

Then the energy partition between incident longitudinal wave and transmitted or reflected wave can be written by the following way.

$$E_{T}^{S} = 2 \left(\frac{\beta_{1}}{\alpha_{1}} \right)^{2} \left(\frac{\gamma_{\rho_{1}}}{\beta_{\alpha_{1}}} \right) R_{S} R_{S}^{*}$$

$$E_{T}^{P} = \left(\frac{\beta_{3}}{\beta_{1}} \right) \left(\frac{\alpha_{3}}{\alpha_{1}} \right)^{2} \left(\frac{\gamma_{\alpha_{3}}}{\gamma_{\alpha_{1}}} \right) T_{P} T_{P}^{*}$$

$$E_{T}^{S} = 2 \left(\frac{\beta_{3}}{\beta_{1}} \right) \left(\frac{\beta_{3}}{\alpha_{1}} \right)^{2} \left(\frac{\gamma_{\rho_{3}}}{\gamma_{\alpha_{1}}} \right) T_{S} T_{S}^{*}$$

where A* means the complex conjugate of A, E means the energy ratio, whose superscription identifies the wave type (p or s-wave) and subscription differentiates between the reflected (r) or tranmitted (t), c is horizontal phase velocity, and

$$V_{dm} = \left(\left(\frac{c}{\omega_{m}} \right)^{2} - 1 \right)^{\frac{1}{2}} \quad \text{for } c > \omega_{m}$$

$$= -i \left[1 - \left(\frac{c}{\omega_{m}} \right)^{\frac{1}{2}} \right]^{\frac{1}{2}} \quad \text{for } c < \omega_{m}$$

$$V_{\beta m} = \left(\left(\frac{c}{\beta_{m}} \right)^{2} - 1 \right)^{\frac{1}{2}} \quad \text{for } c > \beta_{m}$$

$$= -i \left[1 - \left(\frac{c}{\beta_{m}} \right)^{2} \right]^{\frac{1}{2}} \quad \text{for } c < \beta_{m}$$

The above energy ratio is not an instantaneous energy ratio, it is the ratio averaged over one period.

Examples and Discussions

Figures 30 through 33 show the square root of the energy ratio as a function of varying bed thickness, using the following parameters (Table 1) for the computation.

Parameters	1	Z	3	
P-WAVE Volocity	m/sec	3090	3750	3000
S- wave velocity	m/sec	1784	Z004	1708
Densiky	Kg/m3	2420	2330	2400

Table 1. Parameters of a thin bed-A.

In these figures 1 represents bed thickness with $1=4d/\lambda$ and λ is the wavelength for normal incidence in the thin bed. When the angle of incidence is less than the p-wave critical angle (55°) between medium 1 and medium 2, we can clearly see the interference effect. For the normal incidence case, when 1 is an even number, the reflection coefficient is equal to the usual coefficient of reflection from the boundary between medium 1 and medium 3, just as if they were in direct contact with one another. Thus we can say that a layer, an integral number of half wave lengths thick, has no effect on the incident wave.

Figure 34 through 37 show the ratio of the square root of the reflected p-wave and s-wave energy to the incident p-wave energy as a function of frequency. The parameters used for this computation are shown in Table 2.

Parameters Med	1	٤	3	
P-wave velocity	m/sec	3939	3000	3787
S-WAVE Velocity				_
Density	Kg/m3	2650	ZZ 50	2550

Table 2. Parameters of a thin bed-B.

In these figures "d" represents bed thickness and Θ represents angle of incidence of the incident wave. We can see how the interference pattern varies with incident pulse frequency.

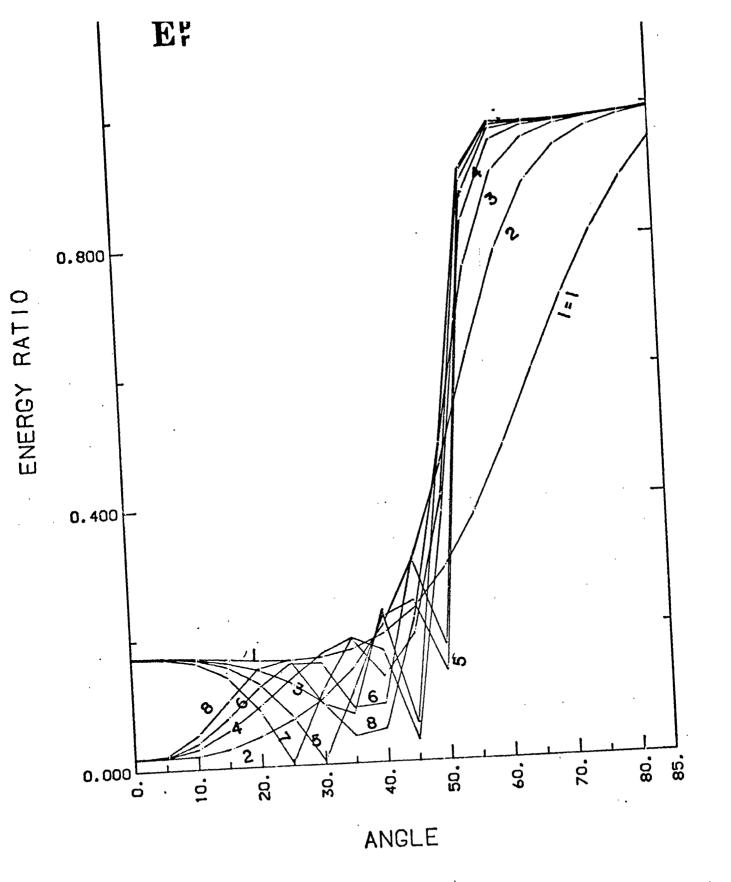


Figure 30. Energy partition for the reflected p-wave with varying bed thickness as a function of incidence angle.

Figure 31. Energy partition for the reflected s-wave with varying bed thickness as a function of incidence angle.

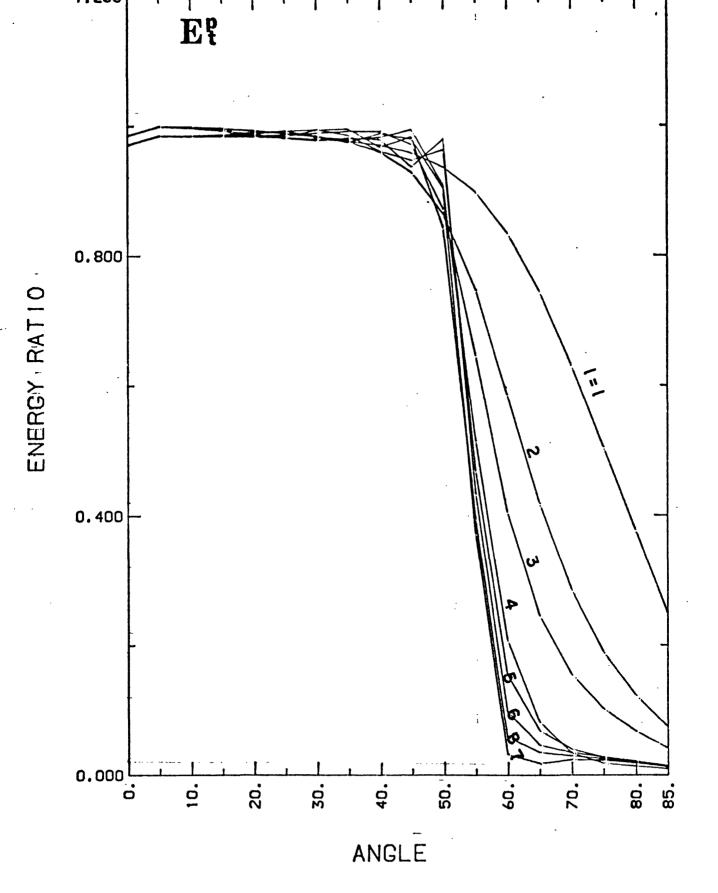


Figure 32. Energy partition for the transmitted p-wave with varying bed thickness as a function or incidence angle.

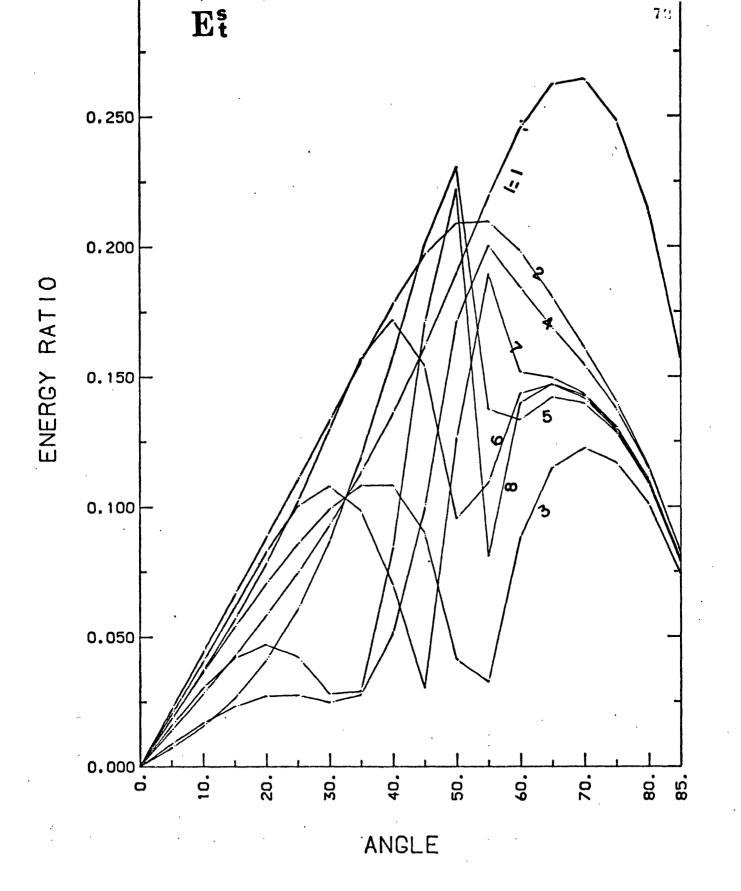


Figure 33. Energy partition for the transmitted s-wave with varying bed thickness as a function of incidence angle.

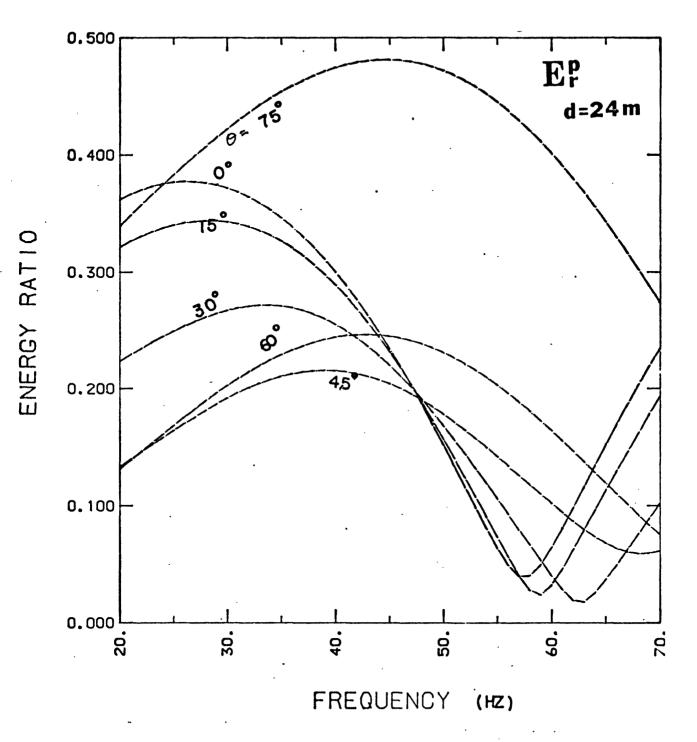


Figure 34. Energy partition for the reflected p-wave with varying angle of incidence as a function of frequency.

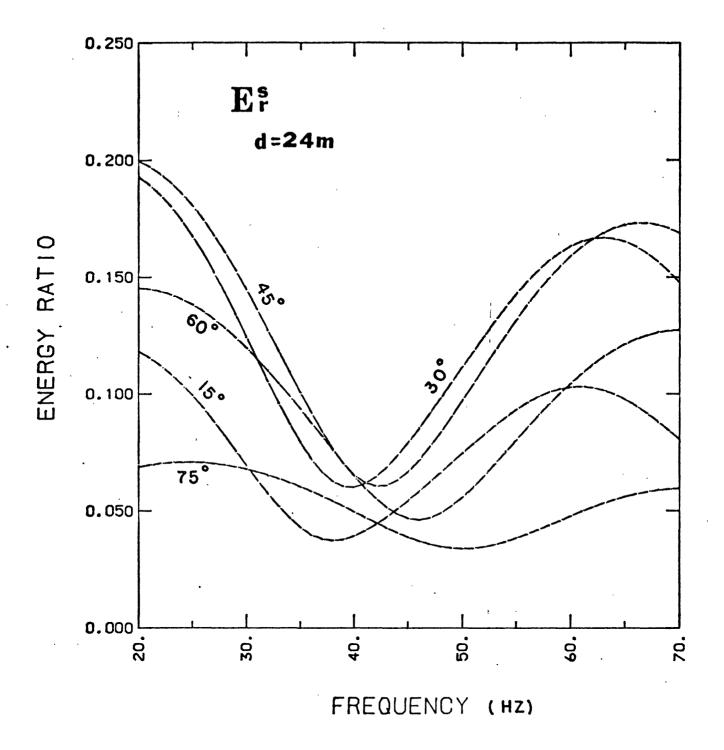


Figure 35. Energy partition for the reflected s-wave with varying angle of incidence as a function of frequency.

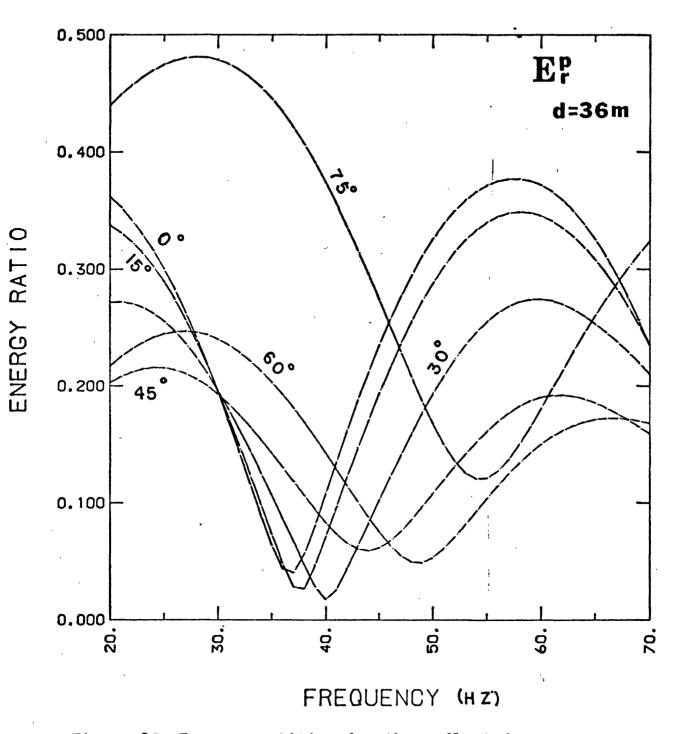


Figure 36. Energy partition for the reflected p-wave with varying angle of incidence as a function of frequency.

Figure 37. Energy partition of the reflected s-wave with varying angle of incidence as a function of frequency.

If we can separate a direct wave from a reflected wave, it is possible to measure the amplitude ratio between two waves in the frequency domain and compare with the calculated reflection coefficients, which may provide a thin bed characteristic. But much of our analysis of field measurement indicates that it is difficult to separate a reflected wave from a direct wave. In this case, we cannot directly compare the reflection coefficients with frequency. So it seems to be more useful to calculate a waveform in the time domain to study the effect of a thin bed or a packet of thin beds.

CONCLUSIONS

An analytic solution of an one-dimensional wave equation for a horizontally layered elastic medium provided a good computer algorithm to generate synthetic seismogram for arbitrary source and detector locations. By a slight modification of the appended computer program, vertical seismic profiles can be easily generated.

The phase and amplitude distortion of a reflected seismic wave, caused by complex reflection and transmission coefficients, may be ignored in generating synthetic seismograms.

Finite difference approaches for the solution of one-dimensional, inhomogeneous, attenuating media may be a good and powerful technique for one-dimensional modeling. For simple models, the solutions by finite difference schemes are in good agreement with analytic solutions. We successfully implemented a radiation boundary condition in the one-dimensional difference formulation. The main problem in applying finite difference approaches to realistic modeling will be the computer execution time, since we may use very small sampling intervals to reduce the propagation error in each inhomogeneous region.

In making two-dimensional seismic models, finite difference approaches may be a useful tool. Even if there are some erroneous arrival times, particularly converted shear waves, and dispersive tails in the wave propagation, we can identify all types of elastic waves in synthetic seismograms. Also we can see the phase change beyond the critical angle reflection and diffractions. For complex subsurface geologic models, particularly in studying amplitude and shape of the reflected and transmitted seismic signals and in studying shear motions, finite difference schemes of the inhomogeneous two-dimensional elastic wave equation seem to be the most pertinent method.

Wide angle reflection coefficients and interference patterns of a thin bed may be used to find characteristic parameters

(thickness and elastic constants) of a thin bed. But it seems to be more promising in analyzing the effect of a thin bed or a packet of thin beds to calculate seismic wave form in the time domain rather than calculating reflection coefficients or interference patterns.

APPENDICES

APPENDIX A

Computer Program and User's Manual for Synthethic Seismogram for Horizontally Layered Perfectly Elastic Half-space

This computer program calculates a synthethic seismogram for a horizontally layered elastic half-space using an analytic solution. The input cards consist of <u>directive</u> cards whose format and forms are specified in this program and other data cards (velocity, density, pressure wavelet, check shot data). In this program there are 8 directive cards to read parameters and to execute the program. The format of this directive cards is (A5.5X.7F10.3).

Let's devide an 80-column computer card into 8 10-column fields and denote each field as DF, (i=1-8).

(1) Directive POSIT

This directive card provides general parameters.

DF1: POSIT. directive.

DF2: Ing. see comment for definition.

- DF3: ISONIC. see comment for definition.

DF4: Shot depth in feet.

DF5: Detector depth in feet.

DF6: Sampling interval of time in milli-second.

DF7: Sampling interval of depth in feet.

DF8: Number of samples of the output, the length of the seismogram will be 2.0*DF6*DF8 milli-seconds.

Comment:

ING: Control number for a source and detector location.

ING-1, Both source and detector on the free surface.

ING=2, Source at free surface and detector buried.

ING-3, Source buried and detector at free surface.

ING=4, Both source and detector buried.

ISONIC: Control number for velocity input.

ISONIC=1, Input velocity is interval transit time. ISONIC=2, Input velocity is real velocity.

(2) Directive FORMT

After this directive card a format card must be followed.

DF1: FORMT. directive.

DF2: Number of data per card.

(3) Directive VELOG

This directive card provide parameters for the velocity input and can accept next deck of velocity input cards whose format is described on a previous format card and number of input data per card is described on FORMT card.

DF1: VELOG. directive

DF2: SCALV. see comment for definition.

DF3: IGOV, see comment for definition.

DF4: TREF. see comment for definition.

DF5: Depth of the first data point in feet.

DF6: Surface velocity in ft/sec/1000.

DF7: Velocity of half-space in ft/ms.

DF8: FACT. see comment for definition.

Comment:

IGOV: Control number for the over-burden velocity.

IGOV-1, Constant velocity from the free surface to the first data point.

IGOV-2, Linear change of velocity from the free surface to the first data point.

IGOV=3. Velocity data is given from the free surface.

In case that input velocity is velocity rather than sonic log, DF4, DF8 can be any number. DF2 is a scale factor to convert the dimension of input velocity into ft/ms. If the dimension of input velocity is ft/sec, then DF2 is 0.001. If input velocity is interval transit time (sonic log), it must be converted into velocity by using the following equation:

v = c/(a*DT + T)

where v is velocity in ft/ms, DT is the interval transit time, and c,a, and T are constant to make correct velocity in ft/ms. In directive card,

DF2 := c

DF4 - T

DF8 - a.

(4) Directive DEMST

This directive card provides parameters for density input and can accept next deck of input density cards. If there is no density information, this card can be ignored.

DF1: DEMST, directive.

DF2: Scale factor to make all density in same dimension, DF2 can't be 0.

DF3: Same as DF3 field of directive VELOG except that it applies to the density.

DF4: Depth of the first data point.

DF5: Surface density.

DF6: Density of half-space.

(5) Directive PULST

This directive card has no parameters and can accept the e next deck of input pressure wavelet cards. If an impulsive seismogram is desired, this card must be ignored.

DF1: PULST.directive.

(6) Directive SHOTP

This is necessary to read check shot data, if available. If check shot data are available, two SHOTP cards are needed: One to read check shot depth in feet and another one to read check shot time in ms. If there are no ckeck shot data, this card should be ignored.

DF1: Shotp, directive. DF2: 1 or 2, see comment

Comment:

If you want to read check shot depth after directive SHOTP, yoy must put 1 in DF2 field. If you want to read check shot time after SHOTP, you must put 2 in DF2 field. The first check shot point must be at the free surface— that is check shot depth is 0 feet and check shot time is 0 ms.

(7) Directive DEVIC

This is necessary to assign logical units for input-output devices.

DF1: DEVIC, directive.

DF2: Logical unit for input.

DF3: Logical unit for output(line printer).

DF4: Logical unit for output(other than line printer

for further processing).

Comment:

Pre-assigned value of this card is

DF2=2.

DF3=3.

DF4-12.

The format for logical unit DF4 is

(4X,F10.0,6X,E20.8,3X,F10.0,6X,E20.8), where first field is time and second field is velocity.

(8) Directive REXIT

This directive card must be included to execute the computer program. This card must be the end of input deck cards.

DF1: BEXIT. directive.

Further illustrations:

After 'FORMT' card, a format card must be followed, whose format is (16A5). This format card must include a signal space between two field characters. The following symbols are legal signals.

- * Stop code. This signal is an end of data and te terminates reading of the data.
- S Skip code. The field of characters preceding this code and all remaining field on the card are skipped.
- D Omit code. The field of characters preceding this code is omitted.
 - (blank) The preceding data value is stored in an array.

The followings are examples of valid format card; (F9.2,1A), (F10.0,1A).

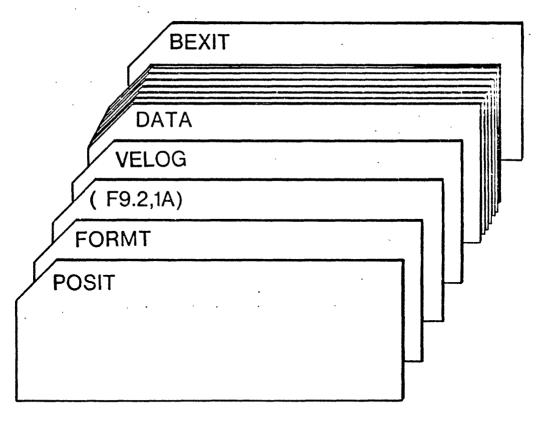
After 'VELOG', 'PULST', 'DENST', 'SHOTP' card, there must be followed an input data deck velocity, pressure wavelet, density density, check shot data respectively, whose format is described on the preceding format card which appears after 'FORLT' card.

When there is no VELOG directive card, the program terminates the job. Therefore, the minimum number of directive cards to execute this program are 4 (FORMT, POSIT, VELOG, BEXIT), and other directives are optional.

Example:

Given that:

(a) Input velocity is sonic log such that


v=1000/(DT+40), and check shot data and density data are not available.

- (b) Your first sonic input data is at depth 200 ft and over-burden velocity is assumed to be constant.
- (c) Half-space velocity is 20 ft/ms and sampling interval DT-1 ms, DR-2 ft, and both shot source and detector located at the free surface.

From above information, we are going to make one-second long impluse response of layered half-space. The top of Figure A-1 shows the directive cards and the bottom of Figure A-1 shows how to put together input data cards.

DF1	DF2	DF3	DF4	DF5	DF6	DF7	DF8
POSIT	1.0	1.0	0.0	0.0	2.0	2.0	500.
FORMT	2						
VELOG	1000.	1.0	40.	200.		20.0	1.0
BEXIT							

DIRECTIVE CARDS

SEQUENCE OF INPUT CARDS

Figure A-1. Preparation of input cards for a synthetic seismogram.

00001

```
00002
              THIS PROGRAM COMPUTES SYMMETHIC SEISHOGRAM(VELOCITY RESPONSE)
00003
        C
             FOR AN HORIZONTALLY LAYERED PERFECT ELASTIC HALF-SPACE.
00004
        Č
             ARGUMENT DEFINITIONS:
                      #CONTROL NUMBER FOR SOURCE AND DECTOR LOCATION.
00005
        C
00006
        Ċ
                   ING#1 SUURCE AT FPEE SURFACE AND DETECTOR AT FREE SURFACE.
                   ING=2 SOURCE AT FREE SURFACE AND DETECTOR BURIED.
00007
        C
                   ING=3 SOURCE BURIED AND DETECTOR AT FREE SURFACE.
80000
        C
00009
        C
                   ING=4 SOURCE BURIED AND DETECTOR BURIED.
                IGOV : COWIROL NUMBER FOR THE OVERBURDEN VELUCITY INFORMATION.
00010
        C
        č
00011
                  IGUV=1 ASSUME CONSTANT VEHOCITY FROM THE SURFACE TO THE FIRST
                         DATA POINT (INPUT DATA).
00012
        C
                  IGOV=2 LINEAR INTERPOLATION OF VELOCITY FROM THE SURFACE TO
        Č
00013
00014
        C
                         THE FIRST DATA POINT.
        č
00015
                  IGOV=3 VELOCITY DATA IS GIVEN FROM THE SURFACE.
00016
        Ċ
                  *THEREFORE, WHEN YOUR INPUT IS START FROM 1000FEET BELOW THE SURFACE
00017
        C
                   AND ASSUME CONSTANT VELOCITY FOR 0 - 1000FEET, THEN IGOV=1.
        C
00018
                ISONIC: CONTROL NUMBER FOR VELOCITY INFORMATION OF THE INPUT.
        č
00019
                  ISONIC=1 IMPUT VELOCITY IS IMTERVAL TRANSIT TIME (SONIC LOG).
00020
        C
                  ISONIC=2 INPUT VELOCITY IS REAL VELOCITY.
00021
        C
                SPOINT: DEPTH SOURCE LOCATED IN FEET.
        Č
00022
                DPOINT: DEPTH PETECTUR LOCATED IN FEET.
        Ċ
                      * SAMPLING INTERVAL IN TIME SECTION ... ONE -WAY TRAVEL TIME.
00023
                OT
00024
        C
                        DIMENSION OF DT MUST BE MILLI-SECOND.
00025
        C
                      : SAMPLING INTERVAL OF DEPTH IN FEET. MUST BE IN FEET.
        Č
00026
                NOUT: THE LENGTH OF THE SEISHOGRAM.
                SCALV: (1) WHEN ISONIC=2, SCALE FACTOR TO MAKE CORRECT DIMENSION OF VELOCITY OF INPUT IN FEET/MS. YOUR INPUT DATA IS FEET/MS.
        Č
00027
        CC
00028
                           SCALV=1.0.
00029
        Ċ
                       (2) WHEN ISONIC=1, SCALE FACTOR TO MAKE CORRECT DIMENSION OF
00030
                            VELOCITY FROM THE SONIC LOG BY THE FOLLOWING FORMULAR.
00031
        Ċ
00032
        C
                       V=S/(C*T+TR), WHERE V=VELOCITY IN FT/hS,T=INTERVAL TRANSSIT
00033
        C
                       TIME ,S,TR,C ARE SCALE FACTOR FOR THE CORRECT VELOCITY.
00034
                       S=SCALV.
                TREF! TR IN THE ABOVE EQUATION.
00035
        C
00036
                FACT: C IN THE ABOVE EQUATION
        C
                DREFY: THE DEPTH IN FLET OF THE FIRST DATA POINT OF VELOCITY INPUT.
00037
        C
        Ċ
                DREFD: THE DEPTH IN FELT OF THE FIRST DATA POINT OF DENSITY.
00038
        C
00039
                VSUR! SURFACE VELOCITY IN FI/MS.
        C
                VBASE: VELOCITY OF THE HALF-SPACE IN FT/MS.
00040
00041
        C
                DSUR! DENSITY OF THE FREE SURFACE.
00042
                DVASE: DENSITY OF THE HALF-SPACE.
00043
        C
                SCALD: SCALE FACTOR FOR THE DEMSITY. IT CAN BE ANY NUMBER EXCEPT ZERO.
00044
        C
                ISEL: CONTROL NUMBER FOR THE CHECK SHOT DATA .
                  ISEL=1 15 PUT DATA IS DEPIH IN FEET WHERE CHECK SHOT DATA IS GIVEN.
00045
        C
                  ISEL=2 1-PUT IS CHECK SHUT TIME IN MS WHERE CHECK SHUT DATA IS GIVEN.
00046
        C
                  * FIRST CHECK SHOT POINT IS ON FREE SURFACE.
00047
        C
00048
00049
                LOGICAL ERRIN
00050
                DIMENSION LIBARY(8), PARA(7), FMT(16)
00051
                DIMENSION CTIME(5000), DVEL(5000), R(5000), SMEGA(3000)
00052
                DIMENSION CHECKI(50), Checkh(50), PULSE(200)
00053
                DIMENSION TVEL(1500), DEN(1500), SPOSI(1500), TEMP(1500)
                COMMON /BK1/IN, IOUT, ITAPE
06054
00055
                COMMUN /BK3/DT, SPOINT, DPOINT
00056
                COMMON /bh4/IDEC, ISOUR, NOUT, NPUL, FRONT, NTMAX, ISIGN, ING
```

```
DATA LIBARY/SHPUSIT.SHFORMT.SHVELOG.SHPENST.SHPULST.
00057
00058
          1 SHDEVIC. SHBEXIT. SHSHUTP/
00053
           NIDB
00060
      00061
         PRESET PARAMETERS.
00062
      00063
           DATA MAXINI/10000/
           DATA IN, IOUT, ITAPE/2,3,12/
00064
00065
           DATA Dr. DZ, SPOINT, DPUIST, PULSE(1)/1.0,2.0,0.0,0.0,1.0/
00066
           DATA ICHECK, ISIGN, ISONIC, NOUT, PUL, ING/2, 2, 2, 999, 1, 1/
00067
            ITERMa1
DOUSE
      C READ DIRECTIVE CARDS
00069
00070
      00071
             CALL MONITER(LIBARY, NL, PARA, INDEX)
00072
           GO TO(701,702,703,704,705,706,707,708), INDEX
00073
      00074
      C READ PARAMETER CARD.
      00075
00076
           ING=PARA(1)
      701
00077
           ISONIC=PARA(2)
00078
           SPOINT=PARA(3)
00079
           DPGINT=PARA(4)
00080
           DI=PARA(5)
00081
           DZ=DARA(6)
00082
           NOUT=PARA(7)
68000
           GO TO 1100
00084
      702
           MPC=PARA(1)
00085
      C#######################
                        ******
00086
      C READ FORMAT CARD
00087
      C ********************************
00088
           READITA. 11101FMT
00089
           FURMAT(16A5)
00090
           GO TO 1100
00091
      C**********************
00092
      C READ PARAMETER CARD FOR THE VELOCITY
00093
      C *******************************
00094
      703
            SCALV=PARA(1)
00095
           IGDV=PARA(2)
00096
           TREF=PARA(3)
00097
           DREFV=PAKA(4)
00098
           VSUR=PARA(5)
00099
           VBASE=PARA(6)
00100
           FACT=PARA(1)
00101
00102
      C READ VELOCITY IMPUT.
      C****************
00103
00104
            CALL READIN(DVEL, NVEL, MAXINI, NPC, FAT, ERRIN)
00105
           IF(ERRIN) CALL EXIT
00106
           ITERM#2
           60 TO 1100
00107
00108
      C**********************************
00109
      C READ PARAMETER CARD FOR THE DESSITY.
00110
      00111
      704
             SCALD=PARA(1)
00112
           IGOD=PARA(2)
```

```
00113
          DREFD=PARA(3)
00114
          DSUR=PARA(4)
00115
          DVASE=PARA(5)
00116
     C READ DENSITY INPUT
00117
     00118
00119
          CALL READIN(R, DDEN, MAXINT, NPC, FMT, ERRIN)
00120
          IF(ERRIN) CALL EXIT
00121
          ISIGN#1
00122
          GU TU 1100
00123
     00124
     C READ INPUT PULSE
     00125
           CALL READIN (PULSE, HPUL, MAXINT, NPC, FMT, ERRIN)
00126
00127
           IF(ERRIN) CALL EXIT
00128
          GO TO 1100
00129
     00130
     C READ INPUT, OUTPUT DEVICE LUGICAL UNIT,
00131
     -
00132
          IN=PAKA(1)
00133
          IDUT=PARA(2)
00134
          ITAPE=PARA(3)
00135
          GO TO 1100
     708
00136
           ISEL=PARA(1)
00137
          ICKECK=1
          GO TO(801,802), ISEL
00138
00139
     C*********************************
     C READ CHECK SHUT DATA...DEPTH
00140
00141
     C****************
00142
     801
           CALL READIN (CHECKD, MSHUT, MAXINT, NPC, FNT, ERRIN)
00143
           IF (ERRIN) CALL EXIT
00144
           GO TO 1100
00145
     C*********************
00140
     C REAU CHECK SHUT DATA. TIME
     00147
00148
     802
           CALL READIN(CHECKT, MSHUT, MAXINI, NPC, FMT, ERRIN)
00149
           IF(ERRIN) CALL EXIT
00150
          GO TO 1100
     707
           IF(ITERM.NE.1) GO TO 709
00151
00152
           WRITE(IOUT, 711)
     711
          FORMAT(//, 4x, 100 VELOCITY INFORMATION... JOB ABORTED! ..)
00153
00154
          CALL EXIT
     709
00155
           CUNTINUE
00156
     00157
     С
         CHECK THE 10PUT VELOCITY (SUNIC OR VELOCITY)
00158
     00159
          GO TO(714,715), ISONIC
00160
     *********************************
     C COMPUTES VELOCITY FROM THE SONIC LOG
00161
00162
     00163
          CALL SONVEL (DVEL, FACT, SCALV, TREF, NVEL)
          SCALV=1.0
00164
00165
     715
         GO TO(716,716,717), IGOV
00166
     C*********************
00167
     C COMPUTES OVER-BURDEN VELOCITY.
00168
     ***********************************
```

```
FORTRAN V.4A(230) /KI 1=0CT=75
                                                22126
                                                      PAGE 1=3
MAIN.
     LN47TL FOR
00169
     716
           CALL MOVE(VSUR. DREEV. DVEL. NVEL. DZ. 1GOV)
00170
     717
           GO TO(718,719), ISIGN
00171
     71R
          GO TU(811,811,812),1GOD
00172
     C COMPUTES OVER-BURDER DENSITY.
00173
00174
      811 CALL MOVE (DSUR, DPEFD, SNEGA, NDEN, DZ, IGOD)
00175
00176
      812
          NVEL=AMINO(NVEL, NDEN)
00177
     C COMPUTES CUMULATIVE TIME
00178
00179
      C**********************************
00180
     719 CALL CUMUT(CTIME, DVEL, NVEL, DZ, SCAUV, CHECKT, CHECKD, ICHECK, MSHOT)
18160
     00182
       COMPUTES INTERVAL VELOCITY IN EQUAL TIME SECTION.
00183
      C*********************
           CALL VELTIM (DVEL, CTIME, NVEL, TVEL, NTWAX, DT)
00184
00185
      C****************
00186
     C COMPUTES INTERFACE NUMBER FOR THE SHOT AND DETECTOR POSITION.
00187
      ( *******************
00188
           CALL POSIT(TVLL, SPUINT, DT, ISOUR)
00189
           CALL PUSIT(TVEL, DPOINT, DT. IDEC)
00190
           GU TO(813,814), ISIGN
00191
     C COMPUTES INTERVAL DENSITY FOR THE EQUAL TIME SECTION.
00192
00193
      00194
      813 CALL VELTIM(R, CTIME, NVEL, DEN, NTMAX, DT)
00195
     814
           NTHAYENTMAYAT
00196
           TVEL(ATMAX)=VBASE
00197
      C********************
00198
     C LIST INTERVAL VELOCITY IN TIME SECTION
00199
      00200
           CALL GUTLIS(0., DT. ISIGN. IGOV. SPOINT. DPUINT. VBASE. DVEL. TEMP.
00201
         1 TVEL, NTMAX, 2)
00202
           GU TO(815,818), ISIGN
00203
      815
           DEN(NTMAX)=DBASE
00204
           DO 10 I=1.NTMAX
     C*********************
00205
00206
     C COMPUTES ACOUSTIC IMPEDANCE
00207
      C****************
00208
      10
         TVEL(I)=TVEL(I)*DEN(I)
00209
      818
           NTMAX=NTHAX=1
00210
      C********************
00211
      C COMPUTES REFLECTION COEFFICIENT
00212
      00213
           CALL REFLICTVEL, NIMAX, R)
00214
           NTMAX=STMAX+1
00215
      C*********************
00216
      C CUMPUTES SOME CONSTANT
00217
      CALL FRI(ING, TVEL, ISGUR, IDEC, FRONI, RTIME, R)
00218
00219
            GD TO (111,111,222,222), ING
00220
      C SYNTHETRIC SEISHOGRAN FOR THE SURFACE SOURCE
00221
00222
      *******************************
      111 CALL SURFAC (R.CTIME, DVLL, TVEL, DEM, TEMP, PULSE)
00223
00224
           GD TO 3000
```

```
MAIN.
       LN47TL_FOR
                      FORTRAN V.4A(230) /KI 1=0CT=75
                                                           22126
                                                                  PAGE 1=4
00225
       ********************
       C SYNTHETHIC SEISHUGRAM FOR THE BURIED SOURCE.
00226
00227
       00228
       222
            CALL BURILD (R.CTIME, SNEGA, TVEL, DEN, DVEL, TEMP, PULSE, SPOSI)
00229
       3000 CONTINUE
00230
       **********************************
       C LIST VELOCITY RESPONSE
00231
00232
       00233
              CALL OUTLISCRTIME.DT.ISIGN.IGOV.SPOINT.DPOINT.VBASE.DEN.R.CTIME.
00234
            1 NOUT, 1)
00235
              STOP
00236
              END
COMMUN BLUCKS
/BK1/(+3)
IN
               TUUI
                      +1
                              ITAPE
                                     +2
/BK3/(+3)
               SPOINT
DΤ
       +0
                      +1
                              DPDINT
/BK4/(+10)
IDEC
       +0
               NOUT
                      +2
                                            FRONT
                                                           NTMAX
ISOUR
       +1
                              NPUL.
                                     +3
                                                    +4
                                                                   +5
ISIGN
       +6.
               ING
                      +7
SUBPROGRAMS CALLED
                                     SONVEL
OUTLIS REFL
               CUMUT
                      AMINO.
                              POSIT
SURFAC FRT
               MONITR MOVE
                              READIN EXIT
BURILD VELTIM
SCALARS AND ARRAYS ( "*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED ]
*ICHECK 1
               *NDEN
                              CHECKD 3
                                             *RTIME 65
                                                            TVEL
                                                                   66
                                                                          *NVEL
                                                                                  3022
                      2
CT1ME 3023
                                             CHECKT 14644
               LIBARY 14633
                              *DZ
                                     14643
                                                            ERRIN
                                                                  14726
                                                                          #NL
                                                                                  14727
       14730
                      14731
                              *DREFD
                                    14/51
                                             SNEGA 14752
                                                            *DVASE
                                                                  22642
                                                                          *ISEL
                                                                                  22643
*NPC
               FMT
                                                                   25611
               #SCALV
                              SPOSI
                                             PARA
                                                    25602
                                                            #VSUR
                                                                           PULSE
                                                                                  25612
#INDEX
                                     22546
       22644
                      22645
                              *ISO/IC 25124
                                                            .SUUOU 37735
#160v
       26122
               *MSHUT
                      26123
                                             DVEL
                                                    26125
                                                                          *DSUR
                                                                                  37736
                                             *VBASE 54504
                                                                                  54506
*TREF
       37737
               TEMP
                      37740
                              R
                                     42074
                                                            *ITERM 54505
                                                                           DEN
       57442
                      57443
                              *FACT
                                     57444
                                             *ICKECK 57445
                                                           #SCALD
                                                                   57440
                                                                          *MAXINT 57447
*IGOV
               # I
*DBASE 57450
               *DREFV
                      57451
```

TEMPURARIES

MAIN. [NO ERRORS DETECTED]

```
00001
                SUBROUTINE OUTLISCRIME. DT. ISIGN. 1GO. SPOINT. DPOINT. VBASE, TIME.
00002
              1 DEP, VEL, NMAX, 1FLAG)
00003
        C----SUBROUTINE OUTLIS----
00004
        C
              THIS SUBROUTINE LIST THE OUTPUT.
00005
00000
               COMMON /BKI/IN, TOUT, ITAPE
00007
                DIMENSION TIME(1), VEL(1), DEP(1)
80000
                DITEDT#2.
00009
                DTC=RTIME-DTT
00010
                DO 10 1=1.NMAX
00011
                DIC=DTC+DTT
00012
        10
                TIME(I)=DIC
                GO TO(111,112), IFLAG
00013
00014
                wRITE(100T,100)
        111
                FORMAT(1H1,//,8X, SYNTHETHIC SEISMOGRAM!//,
        100
00015
00016
              1 8X, GOTPUT IS VELOCITY RESPONSE!)
00017
                GU TU(12,13), ISIGN
00018
        12
                WRITE(1001,200)
                FORMAT(//, 8X, 'DEBSITY INFURMATION IS GIVEN')
        200
00019
00020
                GO TO 20
         13
00021
                WRITE(IUUT, 300)
         300
                FORMAT(//, 8X, 'DENSITY IS ASSUMED TO BE CONSTANT')
00022
00023
                GO TO 20
00024
         112
                 WRITE(IUUT, 400)
                FURNAT (1H1, //, 8X, 'INTERVAL VELOCITY ... FEET/MILLI-SECOND')
00025
         400
00026
                GO TO(21,22,20),IGO
00027
        21
                #RITE(ICUT,500)
                   FORMAT(//, 8X, TOYERBURDEN VELOCITY IS ASSUMED TO BE CONSTANT!)
00028
         500
00029
                GO TO 20
00030
         22
                *RITE(IOUT, 600)
                 FORMAT(//, 8x, OVERBURDEN VELOCITY IS ASSUMED TO BE RAMPI)
00031
        600
00032
         20
                WRITE(IOUT, 700) SPOINT, DPOINT, VBASE
         700
                 FORMAT(//,8x, 'SOUECE POSITION=1, F6.0,2x, 'FEET'/,
00033
00034
                 8X, 'DETECTOR POSITION=',F6.0,2X, 'FEET'/,
                bx, VELUCITY OF HALF SPACE=1, F12.6, FT/MS1///)
00035
00036
                GO TO(210,220), IFLAG
         210
00037
                WRITE(10UT, 900)
                FORMAT(11X, TIME:, 15X, VELOCITY:, 11X, TIME:, 15X, VELOCITY://)
00038
         900
00039
                ARITE(IOUT, 800) (TIME(1), VEL(I), I=1, NMAX)
00040
                WRITE(ITAPE, 800) (TIME(I), VEL(I), I=1, NHAX)
         800
00041
                FORMAT(4X,F10,0,6X,E20,8,3X,F10,0,6X,E20,8)
00042
                RETURN
00043
         220
                DEP(1)=0.0
00044
                DO 30 1=2,NMAX
00045
         30
                DEP(I)=DEP(I=1)+DT*VEL(I=1)
00046
                WRITE(IQUI,1000)
                FORMAT(14X, 'TIME', 7X, 'DEPTH', 6X, 'VELOCITY', 10X, 'TIME', 8X, 'DEPTH',
00047
         1000
00048
                6X, 'VELUCITY'//)
                WRITE(IOUT, 1100) (TIME(I), DEP(I), VEL(I), I=1, NMAX)
00049
                FORMAT(13X, F6.0, 5X, F6.0, 3X, F12.6, 7X, F6.0, 7X, F6.0, 3X, F12.6)
00050
         1100
00051
                RETURN
00052
                END
```

```
22126
                                                                        PAGE 1
MONITE LN47TL.FOR
                        FORTRAN V.4A(230) /KI 1=UCT=75
               SUBROUTINE MONITE (LIBARY NL PARA INDEX)
00001
00002
        Commonweasubrouting MURIIR ....
          THIS SUBROUTINE MONITORS CONTROL CARD INPUT AND RETURNS..
00003
            THE INDEX OF THE COUTROL CARD NAME PLACED IN THE LIBARY ARRAY.
00004
            ARGUMENT DEFINITIONS ..
00005
        Č
                   = THE NUMBER OF MAMES IN LIBARY
00006
        C
                   = THE ARRAY OF REAL PARAMETERS TO BE READ FROM THE CARD.
00007
              INDEX = INDEX OF THE CONTROL CARD NAME FOUND IN THE LIBARY
00008
        C
00009
                      TO BE RECOGNIZES BY THE MONITOR
00010
00011
             DIMENSION LIBARY(NL), PARA(7)
00012
               COMMON /BK1/IN.IUUT.ITAPE
               DATA NAAX/7/
00013
00014
               NUMENMAX
00015
               READ(IN, 41) NAME, (PARA(I), I=1, NUM)
00016
               FORMAT(A5,5x,7F10,3)
00017
               DU 51 J=1,NL
               IF(NAME, NE, LIBARY(J)) GO TO 51
00018
00019
               INDEX=J
00020
               RETURN
00021
               CONTINUE
        51
00022
               WRITE(IGUT, 61) NAME, (PARA(K), K=1, NUM)
                FOREAT(1HO.18H ERROR DECECTION -//.24H ILLEGAL CONTROL CARD...//.
        61
00023
00024
             1 1H0, A5, 5X, 7F10.0)
00025
               CALL EXIT
00026
               END
COMMUN BLOCKS
/BK1/(+3)
                                        +2
IN
       +0
                TUOI
                        +1
                                ITAPE
SUBPROGRAMS CALLED
EXIT
SCALARS AND ARRAYS ( "*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED ]
                                                                                 *INDEX 6
                *NAME
                                                 *NUM
*K
                        2
                                 LIBARY 3
                                                                  .S0000 13
                                                                                 10002 14
                                                 .50001 12
                PARA
                        10
                                 .S0002 11
                                *NMAX 17
 .10001 15
                                                  .10000 20
                *I
                        16
TEMPORARIES
 .MON16 43
```

MONITR (NO ERRORS DETECTED)

```
10000
                               SUBROUTINE READIN(A.NA. MMAX.NPC.FMT.ERROR)
00002
                Commence SUBROUTIAR READIFFERENCE COMMENCE COMMENTE COMMENCE COMME
                        THIS SUBROUTINE READS A ONE DIMENSIONAL ARRAY IN VARIABLE FORMAT.
Lacon
                C
                        THE NUMBER OF VALUES PER CARD AND THE FURMAT ARE SPECIFIED IN THE
00004
00005
                        SUBROUTINE ARGUMENT. EACH FIELD OF CHARACTERS IS SEPARATED BY A
00006
                        SIGNAL SPACE. THE FULLOWING SYMBOLS ARE LEGAL SIGNALS.
00007
                Č
                                                              THE PRICEEDING DATA IS STORED IN AN ARRAY.
                                                              READING OF THE DATA.
80000
                C
                                       SKIP CODE, THE FIELD OF CHARACTERS PRECEEDING THIS CODE AND
00009
                C
00010
                                                              ALL REMAINING FIELDS ON THE CARD ARE SKIPPED.
                                       OMIT CODE. THE FIELD OF CHARACTERS PRECEEDING THIS CODE IS
                C
                             n
00011
00012
                C
                                                              UMITTED.
                                       STOP CODE. THIS IS THE END OF THE DATA AND TERMINATES READING
                Č
00013
00014
                C
                                                              OF THE INPUT DATA.
00015
                C
                        ARGUMENT DEFINITIONS ..
00016
                Č
                          A = ARRAY CUNTAINING DATA READ FROM CARDS.
00017
                C
                            NA
                                      m NUMBER OF ELEMENT IN ARRAY A.
00018
                Ċ
                             NMAX = MAXIMUM NUMBER OF DATA VALUES ALLOWED.
                            NPC = NUMBER OF DATA VALUES PUNCHED PER CARD.
00019
                C
                            FAT = FURMAT FOR DATA CARDS.
00020
                C
                            ERROR ERROR MESSAGE RETURNED - . TRUE. IF AN ERROR PRESENT
00021
00022
00023
                             LOGICAL ERROR
00024
                              INTEGER BLANK, STUP, UNIT, SIGNAL (20)
00025
                              DIMPRSION WORD(20), FMT(16), A(1)
00026
                               COMMON / BK1/IN, IOUT, ITAPE
00027
                               DATA MESS/SHERRUR/, BLALK, STOP, SKIP, OMIT/1H , 1H*, 1HS, 1HD/
00028
                               ERRUR= FALSE
00029
                               IGU=1
00030
                               NA=0
                10
00031
                               READ(IN, FMT) (WORD(I), SIGNAL(I), I=1, NPC)
00032
                               00 60 J=1.NPC
00033
                               1CHEC=SIGNAL(J)
00034
                               IF (ICHEC. EU. BLANK) GO TO 50
00035
                               IF (ICHEC. EG. STOP) GO TO 40
00036
                               IF (ICHEC. EU. SKIP) GO TO 99
00037
                               IF (ICHEC, EG, OMIT) GO TO 60
00038
                               NUM=NA/NPC+1
00039
                               WRITE(IOUT, 88) MESS, NUM
00040
                 88
                               FURMAT(1HO, 10X, A6//, 4X, 'ILLEGAL SIGNAL IN INPUT ON DATA CARD', 14)
00041
                               ERROR= TRUE.
00042
                               GO TO 60
00043
                               IF(NA.GT.NMAX) GO TO 70
00044
                 40
                             1G0=2
00045
                 50
                               NA=NA+1
00046
                               A(NA)=WORD(J)
00047
                               GO 10(60,90),IGO
00048
                 60
                               CONTINUE
                               GO TO 99
00049
                               WRITE(IOUT, 89) MESS, NMAX
00050
                 70
00051
                 89
                               FORMAT(1HO, 10X, A6//, 8X, 29HINPUT IN EXCESS OF ALLOWABLE , 14)
00052
                               ERROR= . TRUE .
00053
                               GO TO 10
00054
                 90
                                RETURN
00055
                               END
```

```
00001
               SUBROUTINE FRT(ING. TVEL. ISOUR, IDEC. FRONT, RTIME, R)
00002
        CunsessessesSUBROUTINE FRTeessessessessesses
60000
        C
           THIS SUBROUTINE COMPUTES THE CONSTANT TERM FOR VELOCITY RESPONSE.
00004
        Ċ
           ARGUMENT DEFINITIONS
00005
               SPOINT=SOUPCE POSITION.....FEET.
        C
00006
        C
               DPDINT=DETECTOR POSITION.....FEET.
00007
               ISOUR =INTERFACE NUMBER SOURCE LOCATED
        C
80000
        C
               IDEC =INTERFACE NUMBER DETECTOR LOCATED.
               FRONT = CONSTANT TERM.
00009
        C
                    #CONTROL NUMBER FOR SOURCE AND DECTOR LOCATION.
00010
        C
00011
                   ING=1 SOURCE AT FREE SURFACE AND DETECTOR AT FREE SURFACE.
        C
00012
        C
                   ING=2 SOURCE AT FREE SURFACE AND DETECTOR BURIED.
00013
                   ING=3 SOURCE BURIED AND DEC
        C
00014
                   ING=4 SOURCE BURIED AND DETECTOR BURIED.
00015
00016
               DIMENSION P(1), TVEL(1)
00017
               COMMON /6K3/DT.SPOINT.DPOINT
00018
                GD TO(111,222,333,444), ING
00019
        111
               RTIME=0.0
00020
                FRONT=1.0/TVEL(1)
00021
                KETURN
        222
                RTIME=DT*IDEC
00022
00023
                IDEC1=1DEC-1
00024
                FRONT=1.0/TVEL(1)
00025
                CALL TRANS(SUM, 1, IDEC1, R)
00026
                FRONT=FRONT*SUM
00027
                RETURN
00028
                RTIME=DT#ISOUR
00029
                ISOUR1=ISOUR=1
00030
                FROm1=1.0
00031
                CALL TRANS(SUM, 1, ISOUR1, R)
00032
                FRONT=FRONT/SUM
00033
                RETURN
00034
        444
                 IDEC1=IDEC-1
00035
                1DEC2=IDEC+1
00036
                ISOUR1=ISOUR=1
00037
                ISOUR2=ISUUR+1
00038
                1F(SPOINT, LE, DPOINT) GO TO 80
                RTIME=DT*(ISOUR=IDEC)
00039
00040
                FRONT=0.5*TVEL(1)/TVEL(IDEC)
00041
                IFIST1=1
00042
                ILAST1=IDEC1
00043
                IFIST2=IDEC
00044
                ILAST2=ISOUR1
00045
                CALL TRANS(SUM, IFIST1, ILAST1, R)
00046
                FRONT=FRUNT/(SUM+SUM)
                CALL TRANS(SUM, IFIST2, ILAST2, R)
00047
00048
                FRONT=FRONT/SUM
00049
                KETURN
                RTIME=DT*(IDEC=ISOUR)
00050
00051
                CALL TRANS(SUM, ISOUR, IDEC1, R)
00052
                FRONT=SUM+0.5
00053
                 RETURN
00054
                END
```

```
SUBROUTINE BURIED (R.D11.D12.E11.E12.SNEGA.TEMP.PULSE.SPUSI)
00001
00002
        Commence SUBROUTINE BURIED ....
          THIS SUBROUTINE CUMPUTES VELOCITY RESPONSE FOR BURIED SOURCE.
00003
        C
          ARGUMENT DEFINITIONS
00004
                 * SEE SUBROUTINE SURFAC *
00005
00006
              COMMON /PK4/IDEC. ISOUR, WOUT, NPUL, FRONT, NTMAX, ISIGN, ING
00007
              DIMENSION R(1), D11(1), D12(1), SNEGA(1), TEMP(1), PULSE(1), SPOSI(1)
80000
00009
               DIMERSION E11(1), E12(1)
               NTMAX1=NTMAX=1
00010
00011
               IDEC1=IDEC=1
               IDEC2=IDEC+1
00012
00013
               ISOUR1=ISUUR-1
00014
               ISOUR2=ISOUR+1
00015
               IF(IDEC.GT.ISUUR) GO TO 8000
00016
               11N=1
00017
               IF(ING,E0.3) GO TO 531
               CALL MATRIX(R, 1, IDEC1, D11, D12, E11, E12)
00018
00019
               TEMP(1)=D11(1)
               TEMP(2)=011(2)-012(2)-012(IDEC)
00020
00021
               IF (IDEC.LI.2) GO TO 531
00022
               TEMP(IDEC)=D11(2)-D12(IDEC)-D12(2)
00023
               TEMP(IDEC2)=D11(1)
00024
               IF(IDEC1.LT.3) GO TO 531
               DO 432 I=3, IDEC1
00025
               TEMP(I)=D11(I)=D12(I)+D11(IDEC1=I+3)=D12(IDEC1=I+3)
00026
        432
00027
        531
               CALL MATRIX(R.1, ISOUR1, 011, 012, E11, E12)
00028
               SPOSI(1)=012(1)
00029
               SPOST(2)=012(2)
                IF(ISOUR, LT. 2) GO TO 532
00030
00031
               SPOSI(ISOUR)=D11(2)+D12(ISOUR)
00032
               SPOSI(ISUUR2)=U11(1)
00033
               1F(ISOUR.LT.4) GO TO 532
00034
               DO 433 1=3, ISOUR1
               SPOS[(I)=012(I)+011(ISOUR1-I+3)
00035
        433
00036
        532
               SNEGA(1)=011(1)
00037
               IF(ISOUR, LT.3) GO TO 444
00038
               DU 436 I=2, ISOUR1
        438
00039
                SNEGA(I)=D11(I)+D12(ISOUR=I+2)
00040
        444
               SNEGA(ISOUR)=D12(2)
00041
               CALL MATRIX(R,1,NTHAX1,D11,D12,E11,E12)
00042
               D11(NIMAX)=0.0
00043
        C
               CALL CONV(D12, NTHAX, SNEGA, ISOUR, R, L10UT)
00044
               CALL CONV(D11, NTMAX, SPOSI, ISOUR2, SNEGA, L2OUT)
00045
00046
               R(L2OUT)=0.
00047
               DO 435 I=1, L20UT
00048
        435
               SPOSI(I)=R(I)=SHEGA(I) -
00049
                IF(1NG,E4.3) GO TO 10
               CALL CONV(SPOSI, L2OUT, TEMP, IDEC2, SNEGA, L3OUT)
00050
00051
               DO 777 1=ISOUR2, L30UI
00052
                SNEGA(IIN)=SNEGA(1)
00053
        777
                IIN=IIN+1
00054
                L3UUT=L3OUT=ISUUR
00055
               D11(NIMAX)=0.0
00056
               DO 436 I=1,NTMAX
```

```
BURIED LN47TL.FOR
                         FORTRAN V.4A(230) /KI
                                                   1-0CT-75
                                                                     22126
                                                                              PAGE 1-1
00057
        436
                SPOSI(I)=011(I)=012(I)
00058
        C
00059
                CALL PCONV(D11, NOUT, SNEGA, L3OUT, SPOSI, NTMAX, PULSE, NPUL)
00060
                DO 38 TEL NOUT
00061
        38
                D11(1)=D11(1)*FRONT
00062
                GO TU 3000
                DO 58 I=1, NTMAX
        10
00063
        58
                SNEGA(I)=011(I)=012(I)
00064
00065
                DO 888 I=ISOUR2, L2OUT
                SPOSI(TIN)=SPOSI(I)
00066
00067
        2 2 2
               IIN=IIN+1
00068
                L20UT=L20UT-ISOUR
00069
                CALL PCONV(D11, NOUT, SPOSI, L2OUT, SNEGA, NTMAX, PULSE, NPUL)
00070
                IF(ISIGN.EQ.3) GO TO 3000
                DO 59 I=1.NOUT
00071
        59
00072
                D11(1)=D11(I)*FRONT
00074
                GO TO 3000
        8000
00074
                CALL MATRIX(R,1, JSOUR1, D11, D12, E11, E12)
00075
                SPOSI(1)=011(1)
                SPUSI(2)=011(2)=012(2)+012(ISOUR)
00076
00077
                SPOSI(ISOUR) == 011(2) -012(ISOUR) +012(2)
00078
                SPOSI(150UR2) = -011(1)
00079
                IF(1SOUR1.LT.3) GO TO 632
00080
                DO 633 I=3.ISOUR1
        633
                SPOSI(I)=011(I)=011(ISOUR1=I+3)=D12(I)+D12(ISOUR1=I+3)
00081
00082
        632
                IMAX=NTMAX1=IDEC+1
68000
                CALL MATRIX(R, 1DEC, IMAX, D11, D12, E11, E12)
00084
                DO 640 I=1, IMAX
00085
        640
                 TEMP(I)=D11(I)+D12(IDEC+I)
00086
                CALL CONVISPOSI, ISOUR2, TEMP, IMAX, SNEGA, L3OUT)
00087
                CALL MATRIX(K,1,NTMAX1,D11,D12,E11,E12)
00088
                D11(NTHAX)=0.
00089
                DO 641 I=1, NTMAX
                 SPOS1(I)=011(I)=012(I)
00090
        641
00091
                CALL PCONV(D11, HOUR, SNEGA, L3QUT, SPOSI, NTMAX, PULSE, NPUL)
00092
                DO 437 I=1, NOUT
00093
        437
                 U11(I)=D11(I)*FRONT
        3000
00094
                RETURN
00095
                END
COMMON BLOCKS
/BK4/(+10)
IDEC
        +0
                 ISOUR
                          +1
                                   NOUT
                                           +2
                                                    NPUL
                                                             +3
                                                                     FRONT
NTMAX
                                   ING
        +5
                 ISIGN
                          +6
                                           +7
SUBPROGRAMS CALLED
PCONV
        CONV
                 MATRIX
SCALARS AND ARRAYS ( *** NO EXPLICIT DEFIDITION - "%" NOT REFERENCED )
*NTMAX1 1
                                                    *IDEC1
                                                                                       *IIN
                 *IDEC2
                         2
                                    E12
                                                                      D11
                                    .50007 11
 SNEGA 7
                  SPUSI
                         10
                                                     .S0006 12
                                                                      PULSE
                                                                              13
                                                                                       *IMAX
                                                                                               14
```

IDEC

NTMAX

+0

+5

ISOUR

ISIGN

+1

+6

NOUT

ING

+2

+7

```
00001
               SUBROUTINE SURFAC(R.D11.D12.E11.E12.TEMP.PULSE)
00002
          00003
        C
           THIS SUBROUTINE COMPUTES THE VELOCITY RESPONSE FOR SURFACE SOURCE.
00004
           ARGUMENT DEFINITIONS
00005
        C
               IDEC = INTERFACE NUMBER DETECTOR LOCATED.
00006
        Ċ
                     =CONTROL NUMBER FOR SOURCE AND DECTOR LOCATION.
               ING
        C
00007
                  ING=1 SOURCE AT FREE SURFACE AND DETECTOR AT FREE SURFACE.
00008
        C
                  ING=2 SOURCE AT FREE SURFACE AND DETECTOR BURIED.
        č
00009
                  ING#3 SOURCE BURIED AND DETECTOR AT FREE SURFACE.
                  ING=4 SOURCE BURIED AND DETECTOR BURIED.
        Č
00010
               NOUT =LENGTH OF THE OUTPUT ARRAY DIL.
00011
        C
00012
        C
               NTHAX=THE NUMBER OF LAYER + HALF-SPACE
        Č
00013
               PULSE=DIGITIZED INPUT WAVE FUNCTION.
        Č
00014
               NPUL =LENGTH OF THE ARRAY PULSE
00015
        C
               ISIGN = CONTROL NUMBER FOR DENSITY.
00016
        C
                ISIGN=1 DENSITY INFORMATION IS GIVEN.
00017
                ISIGN=2 DENSITY IS ASSUMED TO BE CONSTANT.
00018
00019
               DIMENSION R(1), D11(1), D12(1), DEN(1), TEMP(1), PULSE(1), SPUSI(1)
00020
               DIMERSION E11(1), E12(1)
               COMMON /8K4/IDEC, ISOUR, NOUT, NPUL, FRONT, NTMAX, ISIGN, ING
00021
               NTMAX1=NTMAX=1
00022
00023
               GO TU(33,44), ING
        33
               CALL MATRIX(R.1.NTMAX1.D11.D12.E11.E12)
00024
00025
               D11(NTMAX)=0.0
00026
               DO 30 K=1.NTMAX
00027
               R(K) = D11(K) - D12(K)
00028
        30
               D12(K)=D11(K)+D12(K)
00029
               CALL PCUNV(D11, NOUT, D12, NTMAX, R, NTMAX, PULSE, NPUL)
00030
               DO 34 I=1, NOUT
00031
        34
               D11(I)=D11(I)*FRUNT
00032
               GU TO 3000
00033
        C
            SYNTHETHIC SEISMOGRAM FOR BURIED DETECTOR AND SURFACE SOURCE
00034
        44
                 IDEC1=IDEC-1
00035
               IDEC2=IDEC+1
00036
               IMAX=HTMAX-IDEC
00037
               CALL MATRIX(R, IDEC, IMAX, D11, D12, E11, E12)
00038
               DU 60 K=1.IMAX
00039
        60
               TEMP(K)=D11(K)+D12(K+IDEC)
00040
               CALL MATRIX(R,1,NTMAX1,D11,D12,E11,E12)
00041
               D11(NTMAX)=0.0
00042
               DU 70 K=1.NTMAX
00043
        70
               D12(K)=D11(K)-D12(K)
00044
               CALL PCONV(D11, NOUT, TEMP, IMAX, D12, NTMAX, PULSE, NPUL)
00045
               DO 49 [=1,NOUT
00046
        49
               D11(I)=D11(I)*FRONT
00047
        3000
               RETURN
00048
               END
COMMON BLOCKS
/BK4/(+10)
```

NPUL

+3

FRONT

```
LN47TL.FOR
                  FURTRAN V.4A(230) /KI 1-UCT-75
                                                              22126
                                                                     PAGE 1
POSIT
00001
              SUBROUTINE POSIT(Y. DEDINT. DT. IPOINT)
00002
             ----SUBROUTINE POSIT
60003
               THIS SUBROUTINE DETERMINE ARRAY(LAYER NUMBER) INDEX FOR
00004
       č
               DETECTOR AND SOURCE.
00005
       Č
               ARGUMENT DEFINITIONS:
               IPOINT: THE LAYER INTERFACE NUMBER EITHER DECTOR OR SOURCE LOCATED
00006
       Ċ
               DPOINT: THE ACTUAL DEPTH EITHER DECTOR OR SOURCE LOCATED.
00007
       C
               Y: INTERVAL VELOCITY FOR EQUAL TIME SECTIOM
00008
       C
               DT: TIME INCREMENT IN Y.
00009
       C
00010
       00011
              DIMENSION Y(1)
00012
              MEI
              SUM=0.0
00013
00014
       99
              SUM=SUM+DT *Y(M)
              IF(DPOINT=SUM)1,2,3
00015
00016
       2
              IPOINT=M
00017
              RETURN
00018
       3
              M=M+1
00019
              GO TO 99
00020
              TEMP=SUM=Y(M)*DT
00021
              D1=SUM-DPOINT
00022
              D2=DPGINT=TEMP
              IF(D1.GT.D2) IPOINT=M=1
00023
              IF(D1.LE.D2) IPOINT=M
00024
00025
              RETURN
00026
              END
SUBPROGRAMS CALLED
SCALARS AND ARRAYS ( *** NO EXPLICIT DEFINITION = "%" NOT REFERENCED 1
                       2
                                                                      5
                                                                             *D1
                                                                                     6
*IPOINT 1
                               ₩n2
                                       3
               #DT
                                               Y
                                                              # M
                               *DPOINT 11
*SUM
               *TEMP
                       10
TEMPORARIES
POSIT
        [ NO ERRORS DETECTED ]
```

FURTRAN V.4A(230) /KI 1-0CT-75 22126 PAGE 1 VELTIM LN47TL.FOR SUBROUTINE VELTIM(X,T,NT,Y,ND,DT) 00001 00002 CassassessassessSUBROUTINE VELTIMERS CONTRACTOR THIS SUBROUTINE COMPUTES INTERVAL VELOCITY FOR EQUAL TIME 00003 C SECTION FROM VELOCITY FOR EQUAL DEPTH. 00004 00005 C ARGUMENT DEFINITIONS: 00006 Č TE CUMULATIVE TIME (T(1)=090) C XI INTERVAL VELUCITY FOR EQUAL DISTANCE CALCULATED FROM SONIC LOG 00007 YI NEW INTERVAL VELOCITY FOR EQUAL TIME SECTION 60000 C NT: TOTAL NUMBER IN ARRAY X: 00009 C 00010 Č NO: TOTAL NUMBER IN ARRAY Y. DT: TIME INCREMENT IN Y. 00011 C 00012 DIMENSION $\lambda(1), \gamma(1), \tau(1)$ 00013 00014 Y(1)=X(1)00015 AD#IFIX(T(RT)/DT) 00016 M=2 DT1=0.0 00017 00018 DU 100 1=2,ND 00019 DT1=DT+DT1 99 CRT=DT1-T(M) 00020 00021 IF(CRI,LE.0.0) GO TO 55 00022 M=M+1 00023 GO TO 99 00024 Y(1)=X(M)+(X(M)=X(M=1))*CRT/(T(M)=T(M=1))55 CONTINUE 00025 100 ND=ND=1 00026 DO 10 1=1.ND 00027 10 Y(I) = (Y(I) + Y(I+1))/2.000028 00029 ND = ND + 1Y(ND)=X(NT) 00030 00031 RETURN 00032 END SUBPROGRAMS CALLED IFIX.

```
SCALARS AND ARRAYS [ "*" NO EXPLICIT DEFINITION = "%" NOT REFERENCED ]
```

```
*CRT
                                 *DT
                 .50000 10
                                                                            13
                                                                                             14
S0001 7
                                          11
                                                  *ND
                                                           12
                                                                   *I
                                                                                     #NT
                                  X
```

TEMPURARIES

.VEL16 15

VELTIM [NO ERRORS DETECTED]

```
00001
              SUBROUTINE SONVEL (V, FACT, SDZ1, TREF, NMAX)
00002
       Cassassassassus SUBROUTINE SUNVEL
00003
            THIS SUBROUTINE CONVERTS INVERVAL TRANSIT TIME INTO
       С
00004
              INTERVAL VELOCITY.
               ARGUMENTS DEFINITIONS:
00005
               VIINTERVAL TRANSIT TIME AND INTERVAL VELOCITY
00006
       C
00007
               SDZ1, FACT, TREF: CONSTANTS FOR MAKING UCKRECT VELOCITY AND DIMENSION
       C
80000
               NMAXITHE LENGTH OF ARRAY V.
00009
00010
              DIMENSION V(1)
00011
               DO 40 I=1, NMAX
00012
               V(1)=SD21/(FACT*V(1)+TREF)
00013
               RETURN
00014
               END
SUBPROGRAMS CALLED
SCALARS AND ARRAYS ( ** NO EXPLICIT DEFINITION - "%" NOT REFERENCED ]
 v
                 .50000 2
                               *SDZ1
                                                *TREF
                                                                *I
                                                                                *NMAX
*FACT
TEMPORARIES
SONVEL [ NO ERRORS DETECTED ]
```

22126 PAGE 1

SONVEL LN47TL.FOR FORTRAN V.4A(230) /KI 1=OCT=75

```
MOVE
                                                                   22126
                                                                            PAGE 1
        LN47TL.FOR
                         FORTRAN V.4A(230) /KI
                                                1-0CT-75
               SUBROUTINE MOVE(SUR, DREF, V. NT, DZ, IGO)
00001
00002
        C-
                ----SUPROUTINE MOVE----
              THIS SUBROUTINE COMPUTES OVER-BURDEN VELOCITY OR DENSITY BY
00003
        C
00004
        C
              LINEAR INPERPOLATION OR COASIANT VALUE. THE INPUT AND OUTPUT ARE STORED AT
00005
        C
              THE SAME ARRAY NEME V.
00006
        C
              ARGUMENT DEFINITIONS!
00007
                 SUR: FREE SURFACE VALUE ... INPUT.
        C
60000
        C
                 DREF: FIRST DATA VALU
00009
                DREFT DEPTH OF THE FIRST DATA POINT IN FEET.
        C
                 V: VELUCITY OR DENSITY.
00010
        C
                NT: THE LENGTH UF ARRAY V.
        Č
00011
                DZ: SAMPLING INTERVAL IN FEET (DEPTH).
00012
        C
00013
        Č
                 IGO: CONTROL NUMBER WHICH REPRESENTS.
                   IGU=1...CONSTANT VALUE FUR OVER-BURDEN MEDIUM.
00014
00015
                   IGU=2 LINEAR INTERPULATION OF OVER-BURDEN MEDIUM.
00016
00017
               DIMENSION V(1)
00018
               FIR=V(1)
                IREF=IFIX(DREF/DZ)
00019
00620
                IREFI=IREF+1
00021
                IF (IPEF.LT.1) RETURN
00022
                NMAX=UT+IREF
00023
                DO 10 I=NMAX, IREF1,=1
00024
        10
                V(I)=V(I-IREF)
00025
                GO TO(41,42), IGO
               DU 20 1=1,1REF
00026
        41
00027
        20
                V(I)=FIR
00028
                XAMN=TN
00029
                RETURN
                SLOPE=(FIR-SUR)/DREF
00030
        42
00031
                UZ2=-DZ
00032
                DO 30 I=1, IREF
00033
                DZ2=DZ+DZ2
        3.0
00034
                V(I)=SUR+SLOPE#DZ2
00035
                NT=NMAX
00030
                PETURN
00037
                END
SUBPROGRAMS CALLED
IFIX.
SCALARS AND ARRAYS ( "*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED )
*IGO
        1
                                  *DZ
                                          3
                                                   *DZ2
                                                                    *IREF1 5
                                                                                     *SLOPE 6
                 #DREF
                                                                     .50001 13
                                                    .50002 12
                                                                                      .S0000 14
 ٧
        7
                 *IREF
                         10
                                  *FIR
                                          11
                                                   #SUR
#I
        15
                 *NMAX
                         16
                                  #NT
                                          17
                                                           20
TEMPURARIES
 .MOV16 21
```

HOVE

[NO ERRORS DETECTED]

```
SUBROUTINE CUMUTITY, NT, DZ, SCALE, CHECK, CHECKD, ICHECK, IMAX)
00001
00002
           THIS SUBROUTINE COMPUTES CUMULATIVE TIME FOR WAVE TO PROPAGATE FRO-
00003
        C
00004
        C
              SURFACE TO INSIDE THE HALF SPACE.
00005
        C
               ARGUMENT DEFINITIONS
0000p
        CC
                ICHECK: =1 CHECK SHOT DATA IS GIVEN
00007
                       =2 CHECK SHOT DATA IS NOT GIVEN
                DZ: DEPTH INCREMENT
00008
        Č
00009
        Ċ
                Tr CUMULATIVE TIME
00010
        C
                V: INTERVAL VELUCITY FOR EQUAL DEPTH
00011
                NT: DIMENSION OF V.
00012
        C--
00013
               DIMENSION V(1), T(1), CHECK(1), CHECKD(1)
00014
               T(1)=0.0
00015
               DZ=DZ*SCALE
00016
               DO 10 I=2,NT
00017
               TEMP=DZ/V(1-1)
00018
        10
               T(I)=T(I=1)+TEMP
00019
               GO TO(100,200), ICHECK
00020
        100
                  IMAX1=IMAX+1
00021
               CHECK(IMAX1)=T(NT)
00022
               DO 20 I=1.IMAX
               M1=IF1X(CHECKD(I)/DZ)+1
00023
00024
               m2=IFIX(CHECkD(I+1)/DZ)+1
00025
               CUAST=(CH&CK(I+1)=CHECK(I))/(T(M2)=T(M1))
00026
               DO 30 M=M1,M2
00027
        30
               T(M)=CONST*(T(M)=T(M1))+CHECK(I)
00028
        20
               CONTINUE
00029
        200
                RETURN
00030
              END
SUBPROGRAMS CALLED
IFIX.
SCALARS AND ARRAYS [ *** NO EXPLICIT DEFINITION = "%" NOT REFERENCED ]
                 CHECKD 2
                                                                 *M2
                                                                                  *IMAX1
                                                                                          6
*ICHECK 1
                                 T
                                                 *DZ
                                                                  .80002 13
                                                         12
                                                                                  .S0001 14
                *M1
                        10
                                *M
                                         11
                                                 *IMAX
 ,80000 15
                       16
                                                 *CONST 20
                                                                 *TEMP
                                                                                  #I
                 CHECK
                                *SCALE
                                        17
                                                                         21
                                                                                          22
#NT
        23
TEMPURARIES
 .CUM16 24
```

FORTRAN V.4A(230) /KI 1-0CT-75

PAGE 1

22126

CUMUT

LN47TL.FOR

CUMUT [NO ERRORS DETECTED]

```
CONV
                       LN47TL.FOR
                                                                             FORTRAN V.4A(230) /KI 1-0CT-75
                                                                                                                                                                                                                     . 22126 PAGE 1
                                               SUBROUTINE CONV(A, LA, B, LB, C, LC)
00001
00002
                            Commence SUBRUUTINE CONVERNMENT OF THE CONVERNMENT 
                            C THIS SUBROUTINE CONVOLVES TWO FUNCTIONS.
00003
                                               A.B: THO FUNCTIONS TO BE CONVOLVED.
00004
00005
                            Ċ
                                                  C: RESULTANT FUNCTION.
                                                  LA: THE LENGTH OF ARRAY A.
LB: THE LENGTH OF ARRAY B.
LC: THE LENGTH OF ARRAY C.
00006
                            C
00007
                            C
80000
00009
                            C-----
00010
                                                   DIMENSION A(LA), B(LB), C(LC)
 00011
                                                    LC=LA+LB=1
00012
                                                    DO 10 I=1.LC
                      10
                                                    0.0=(1)0
00013
00014
                                                    DO 1 1=1, LA
00015
                                                    DO 1 J=1.LB
                                                     K=1+J-1
00016
00017
                                                    C(K)=C(K)+A(I)+B(J)
                                                    RETURN
00018
00019
                                                    END.
 SUBPROGRAMS CALLED
 SCALARS AND ARRAYS [ *** NO EXPLICIT DEFINITION = *% NOT REFERENCED ]
                                                                                                                                                                                                                                                                                        .sooo2 6
    .10010 1
                                                                                   2.
                                                                                                                   В
                                                                                                                                                                         *J
                                                        *K
                                                                                                                                                                                                                                     .10006 13
.10001 21
                                                                                                                                                                         .10007 12
.10002 20
                                                 . S0000 10
                                                                                                                 *LC
                                                                                                                                                                                                                                                                                             .10005 14
    .S0001 7
                                                                                                                                            11
                                                                                                                                                                                                                                                                                                                     22
                                                                                                                  .10003 17
                                                         *LB
    10004 15
                                                                                   16
                                                                                                                                                                                                                                                                                          # T
    .10000 23
                                                          С
                                                                                    24
                                                                                                                 *LA
                                                                                                                                             25
TEMPORARIES
    .CON16 26
```

CONV

I NO ERRORS DETECTED 1

```
REFL LN47TL.FOR FORTRAN V.4A(230) /KI 1-OCT-75 22126 PAGE 1
00001
           SUBROUTINE REFL(Z,NMAX,R)
00002
      Commence SUBROITINE REFLORMENT
00003
      Ċ
       THIS SUBROUTINE COMPUTES NEGATIVE REFELCTION COEFFICIENTS.
         ARGUMENT DEFINITIONS:
00004
            RI REFLECTION COEFFICIENT
00005
      C
             21 IMPEDANCE
00006
00007
      80000
           DIMENSION Z(1),R(1)
00009
           DO 20 I=1, NMAX
00010
     20
           k(I)=(Z(I)-Z(I+1))/(Z(1)+Z(I+1))
00011
            RETURN
00012
            END
SUBPROGRAMS CALLED
SCALARS AND ARRAYS ( "*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED 1
             .50000 2
                         R 3
                                     *I 4
                                                   *NMAX 5
TEMPORARIES
```

REFL [NO ERRORS DETECTED]

```
SCALARS AND ARRAYS [ "*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED ]
```

*K	1	*KM	2	E12	3	*MT	4	D11	5	#RT	6
D12	7	#ING	10	#RC	11	.50002	12	.50001	13	.S0000	14
R	15	*11	16	# T	17	E11	20		•		•

TEMPURARIES

MATRIX [NO ERRORS DETECTED]

```
LN47TL, FOR FORTRAN V, 4A(230) /KI 1=0CI=75
                                                             22126
                                                                     PAGE 1
TRANS
00001
              SUBROUTINE TRAPS(SUM.NIN.NLAST.R)
       CHARLESUS ROUTINE TRANS-----
00002
00003
            THIS SUBBOUTINE COMPUTES MULTIPLICATION OF TRANSMISSION COEFFICIENT.
       С
             ARGUMENT DEFINITIONS!
00004
       Č
              RI REFLECTION COEFFICIENT.
00005
       С
00006
       č
              NIN: STARTING LAYER TO BE MULTIPLIED.
              NLAST: ENDING LAYER TO BE MULTIPLIED.
00007
       C
80000
00009
              DIMENSION R(1)
              SUM=1.0
00010
              DO 10 I=NIN. NLAST
00011
00012
       10
              SUM=SUM*(1.0+R(I))
              RETURN
00013
00014
              END
SUBPROGRAMS CALLED
SCALARS AND ARRAYS ( "*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED ]
                                                                     5
*SUM
       1
                .50000 2
                               *NIN
                                      3
                                               R
                                                              *I
                                                                             *NLAST 6
TEMPORARIES
TRANS [ NO ERRORS DETECTED ]
```

```
PCONV
        LN47TL.FOR
                         FURTRAN V.4A(230) /KI
                                                    1-0CT-75
                                                                     22126
                                                                             PAGE 1
               SUBROUTINE PCONV(Y, NOUT, A, NA, B, NB, X, NS)
00001
00002
        C +
              ----SUBROUTIVE PCONVACCA
             THIS SUBROUTINE COMPUTES POLYNOMIAL CONVOLUTION OF THE FOLLOWING
00003
        C
                    Y(Z)=A(Z)*S(Z)/B(Z) USING RECURSIVE RELATION.
00004
        C
00005
        C
               ARGUMENT DEFINITIONS
00006
        C
                YI OUTPUT ARRAY
00007
                X: INPUT SOURCE FUNCTION
        C
                A.B: THE COEFFICIENT OF THE TRANSMISSION MATRIX
00008
        C
                NOUT! DIMENSION OF ACUTPUT ARRAY
00000
        C
00010
        Č
                NS: DIMENSION OF X
00011
        C
                NAT DIMENSION OF A
00012
        C
                NO: DIMENSION OF B
        Č
00013
               NOTICE THAT B(1) SHOULD BE 1.0.
00014
                DIMERSION Y(1), A(1), B(1), X(1)
00015
00016
                RTOT=NOUT=1
                IF(48.E0.1) GO TO 77
00017
00018
                CALL CURV(A, NA, X, NS, Y, RTEMP)
                NTEMP2=NTEMP+1
00019
00020
                DO 10 I=NTEMP2.NOUT
00021
        10
                Y(I)=0.0
00022
                GO TO 88
00023
        77
                DO 20 I=1.NA
00024
        20
                Y(I)=\lambda(I)
00025
                NA2=NA+1
00026
                DU 30 I=NA2.NOUT
00027
        30
                Y(I)=0.0
00028
        88
                NA1=NA-1
00029
                NB1=NB=1
00030
                DO 60 K=1, NB1
00031
                DU 60 IK=1,K
00032
                KT=K+1
00033
        60
                Y(KT)=Y(KT)-B(IK+1)*Y(KT-IK)
00034
                DO 70 K=#B.NTUT
00035
                DO 70 IK=1,NB1
00036
                KT=K+1
00037
        70
                Y(KT)=Y(KT)+B(IK+1)*Y(KT-IK)
00038
                RETURN
00039
                END
SUBPROGRAMS CALLED
CONV
SCALARS AND ARRAYS ( "*" NO EXPLICIT DEFINITION = "%" NOT REFERENCED )
#NA1
                                   *NTOT
                                                    #NB
                                                                              5
                                                                                      *IK
                 *NS
                                                                     *K
 R
                 *NTEMP 10
                                   *NA
                                           11
                                                    *NA2
                                                            12
                                                                      Y
                                                                              13
                                                                                      *NTEMP2 14
                                                    .s0003 20
X
 .SOU06 15
                                    .S0004 17
                                                                                       .80002 22
                  .80005 16
                                                                      A
                                                                              21
 S0001 23
                  .S0000 24
                                  TUONA
                                           25
                                                                     #NB1
                                                                              27
                                                                                               30
                                                                                      ۵Ī
*KT
         31
```

APPENDIX B

Computer Program and User's Manual for One-dimensional Finite Difference Scheme

This computer program computes particle displacements in an one-dimensional inhomogeneous medium by a finite difference scheme. This program calculates displacement fields for the following three types of earth material:

(1) Perfectly elastic material.

(2) Voigt solid.

(3) Solid whose attenuation varies approximately linear with frequency.

To solve a free boundary condition, an imaginary grid point is included at x=-DK, where Dx is the spacial sampling interval. We implemented a radiation boundary condition under the assumption that half-space is perfectly elastic.

The pre-assigned logical units for the input-output devices are:

2= Input logical unit.

3- Output logical unit for line printer.

12= Output logical unit except line printer for the further processing.

The format of logical unit 12 is the same as logical unit 3 except that there are no headings.

Figure B-1 shows how to prepare input cards to run this program. Each BLK_i contains parameters of the model and each BLK_i will be read by a format described previous FMT (format) card. The definition of each BLK_i are written below.

BLKI

This block contains DT, DZ, T, NITER, NGEO, IDENS, INODE, VEHL, DENH, NMAX, IGEOP sequentially.

1. DT: Sampling interval of time.

2. DX; Sampling interval of distance.

3. T: The width of source function. In this program, we used the following function as a source function:

The width T is defined as

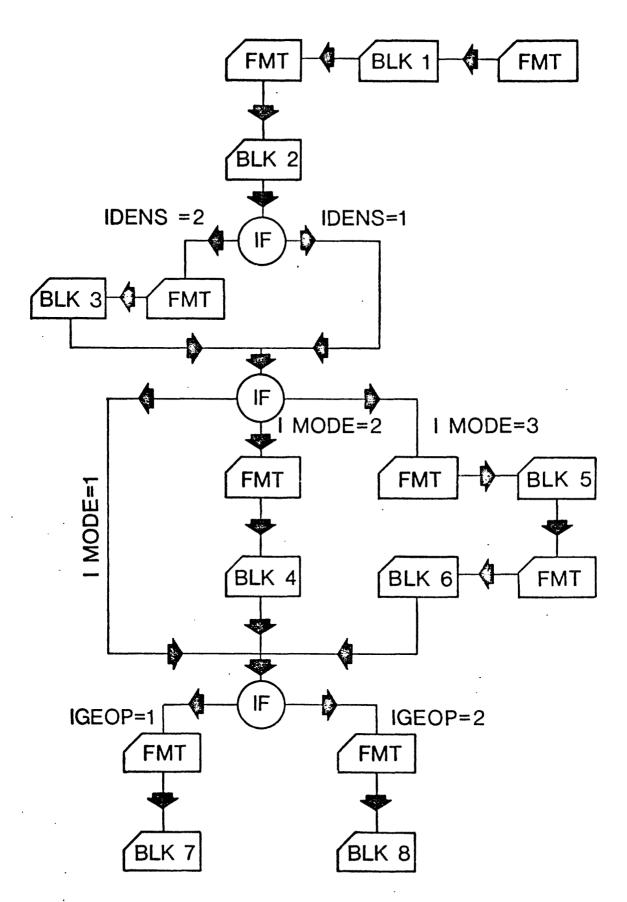


Figure B-1. Preparation of input cards for one-dimensional finite difference schemes.

4. NITER: Number of iteration.

5. NGEO: Number of output geophone(array).

6. IDENS: Control number for density,

IDENS-1, Density is assumed to be constant.

IDENS-2. Density data are given.

7. IMODE: Control number for the model type,

IMODE=1, Perfectly elastic.

IMODE=2, Voigt solid.

IMODE=3, Linear with frequency solid.

8. VELH: Velocity of half-space. .

9. DENH: Density of half-space.

10. NEAX: Number of input data (velocity.density. etc)

11. IGEOP: Control number for the output,

IGEOP-1, Output are regularly spaced. IGEOP-2. Output are irregularly spaced.

BLK2

This block contains the p-wave velocity of the model.

BLK3

This block contains the density of the model.

BLK4

This block contains the attenuation term of the Voigt solid. The equation of motion for the Voigt solid is:

$$\rho \frac{\partial^2 u}{\partial t^2} = c\lambda + 2\mu \frac{\partial^2 u}{\partial x^2} + c\lambda' + 2\mu' \frac{\partial^2 u}{\partial t \partial x}$$

where u is displacement, / is density, and // // are Lame' constants. The attenuation input is defined as

BLK5

This block contains the second attenuation term for the linear with frequency solid. See BLK6.

BLK6

This block contains the first attenuation term for the linear with frequency solid. The constitutive equation for this material can be written as

BLK7

This block contains the information about regularly spaced output array.

- 1. IDECS: The starting index number for the output.
- 2. IDECL: The ending index number for the output.
- 3. IDEINC: Index interval between output arrays.

BLK8

This block contains the information about the irregularly spaced geophones. So the input of this block is the index numbers of the output.

MAIN.

```
00001
       00002
60003
       C
             THIS PROGRAM COMPUTES PARTICLE DISPLACEMENT IN AN ONE-DIMENSIONAL
00004
             INHOMOGENEOUS MEDIUM BY A FINITE DIFFERENCE SCHEME. THIS PROGRAM
       C
             CALCULATES DISPLACEMENT FIELD FOR THE FOLLOWING THREE TYPE OF
00005
       C
             EARTH MATERIAL.
00006
       C
       Ċ
00007
               (1) PERFECT ELASTIC.
                (2) VOIGT SOLID.
80000
       C
                (3) SOLID WHOSE ATTENUATION VARIES LIBEARY WITH FREQUENCY.
00009
       Ċ
00610
             THE DISPLACEMENT SOURCE IS LUCATED ON THE FREE SURFACE.
00011
       C
             RADIATION BOUNDARY CONDITION IS IMPLEMENTED.
00012
       C
             LOGICAL UNIT OF THE INPUT-OUTPUT ARE!
00013
       C
                2º INPUT.
00014
       C
                3= OUTPUT (LINE PRINTER)
        C
                12= OUTPUT (MARETIC TAPE OR DISK FILE).
00015
       Č
00016
              THE HALF-SPACE IS ASSUMED TO BE PERFECT ELASTIC.
       C
              TO SOLVE THE FREE BOUNDARY CONDITION AN IMAGINARY MESH POINT IS
06017
       C
              INCLUED( INDEX=1, ACTUAL FREE BOUNDARY IS LOCATED AT INDEX=2).
00018
00019
        Ċ
              ARGUMENT DEFINITIONS:
               IMODE: CONTROL NUMBER FOR THE TYPE OF THE MEDIUM.
00020
        C
00021
        Č
                  =11 PERFECT ELASTIC.
                  =2: VOIGT SULID.
        C
00022
        Ç
                  =3: LINEAR WITH FREQUENCY SOLID.
50000
               IDENS: CONTROL NUMBER FOR DENSITY.
00024
        C
00025
                  =1: DENSITY IS ASSUMED TO BE CONSTANT.
00026
        C
                  =2: DENSITY INFORMATION IS GIVEN.
00027
        C
               IGEOP: CONTROL NUMBER FOR THE OUTPUT GEOPHONE ARRAY.
        C
                  =11 REGULARY SPACED OUTPUT.
00028
                  =2: IRREGULARY SPACED GEOPHONE GROUP.
00029
        C
00030
        C
               DT: TIME INCREMENT.
               DX: SAMPLING INTERVAL IN DISTANCE.
00031
        C
00032
        C
               NITER: NUMBER OF ITERATION.
        č
00033
               IDECS! STARTING INDEX FOR THE OUTPUT.
00034
        C
               IDECL: ENDING INDEX FOR THE OUTPUT.
00035
        Č
               IDEINC: INTERVAL BETWEEN GEOPHONE OF THE OUTPUT.
               T: THE WIDTH OF THE SOURCE FUNCTION.
00036
        C
               NGED: NUMBER OF THE DUTPUT ARRAY.
00037
        C
               NEAK! TOTAL NUMBER OF INPUT ARRAY(VEL OR DEN...).
86000
        C
               VELH: VELOCITY OF HALF-SPACE.
00039
        C
00040
               DENH: DENSITY OF HALF-SPACE
00041
        C
               VEL: P-WAVE VELUCITY.
               DENI DENSITY.
00042
        C
               PULSE: INPUT DISPLACEMENT PULSE
00043
        C
               IGEO: ARRAY WHICH CONTAINS THE INDICES FOR THE OUTPUT( SELECTED GEOPHONE)
00044
00045
        C************************
00046
              DIMENSION VEL(200), DEN(200), A(200), R(200), C(200), PULSE(100)
00047
               DIMENSION TEMP(200), ATEMP(200), ALPA(200), BETA(200), S(10)
00048
               DIMENSIUM E(10), F(10), G(200), IGEO(10), FAT(16)
00049
               COMMON /INCUT/IN, IOUT, ITAPE, IDECL, IDECS, IDEINC
00050
               COMMON /BKI/DT, DX. TEND, I
00051
               COMMON /BK2/VEL1, VELB, VELH, DEN1, DENB, DENH, ALPA1, ALPAB, BETA1,
             1 BETAB
00052
               COMMON /BK3/IMUDE, IGEOP, IDENS, NPUL, NMAX, NMED, N2, NGEO
00053
00054
               COMMON /BK4/SUB1, CON1, CON2, CON3, CON4
00055
              DATA IN, IUUT, ITAPE/2,3,12/
00056
             READ(IN.100)FMT
```

```
00057
      100 FURMAT(16A5)
00058
      00059
      C READ COMMON PARAMETERS
00060
      READ(IN, FMT)DT, DZ, T, HITER, NGLO, IDENS, IMODE, VELH, DENH, NMAX, IGEOP
00061
00062
           READ(IN. 100)FMT
00063
      00064
      C READ VELUCITY
00065
      C *******************
00066
          READ(IN, FMT)(VEL(I), I=1, NMAX)
00067
           VEL1=VEL(1)
00068
           VELB=VEL(NMAX)
           GO TO (11,12), IDENS
00069
00070
           CONTINUE
           READ(IN.100)FMT
00071
00072
      ******************************
      C READ DEMSITY
00073
00074
      00075
           READ(IN.FMT)(DEN(I), I=1, NAAX)
00076
           DENI=DEN(1)
00077
           DENB=DEN(NMAX)
           GO TO 15
00078
           DEN1=1.0
00079
      11
           DENB=1.0
00080
00081
      15
          GO TO (13,14,14), IMODE
          CONTINUE
READ(IM, 100)FMT
00082
00083
00084
      ***********************
00085
      C READ ATTENUATION PARAMETER
00086
      *******************************
00087
           READ(IN, FOT) (BETA(I), I=1, NHAX)
           BETA1=BETA(1)
00088
00089
           BETAB=BETA(NMAX)
           IF (IMODE, EQ. 2) GO TO 13
00090
00091
      *********************************
00092
      C READ ATTENUATION PARAMETER
00093
      C*********************************
00094
          KEAD(1,,FMT)(ALPA(I),I=1,NMAX)
00095
           ALPA1=ALPA(1)
00096
           ALPAB=ALPA(NMAX)
00097
          CONTINUE
           GO TO(31,32), IGEOP
00098
00099
      31
           READ(IN, 100)FMT
00100
      **********************************
00101
      C READ DUTPUT PARAMETERS FOR THE REGULARY SPACED GEOPHONE
00102
      **********************************
00103
          READ(IN, FMT) IDECS, IDECL, IDEINC
00104
           GO TO 33
00105
      32
            READ(IN, 100)FMT
00106
      C****************
00107
      C READ OUTPUT PARAMETERS FOR ARBITRARY SPACED GEOPHONE
00108
      ***********************************
00109
           FEAD(IN, FMT)(IGEU(I), I=1, NGED)
00110
           NMED=NMAX=1
00111
           TEND=DT*NITER
00112
          N2=NMAX=2
```

MAIN.

LN47TP.FUR

```
LN47TP.FOR FORTRAN V.4A(230) /KI 1-0CT-75
                                                 22125
MAIN.
                                                       PAGE 1-2
      C*********************
00113
      C LIST INPUT PARAMETERS
00114
      00115
00116
           CALL LIST(IMODE.IDENS.OT.DA.T.WITER)
00117
00118
      C CHECK THE STABILITY CONDITION.
00119
00120
      00121
           XU/TC=OITA3
           VMAX=VEL(1)
00122
           DO 66 1=2,NMAX
00123
           UMAX=VEL(I)
00124
00125
           IF (DMAX.GT.VHAX) VMAX=DMAX
00126
           CKIT=VMAX*RATIO
00127
           IF(CPIT.LT.1.0) GO TO 67
           WRITE(IUUT, 200)
00128
           FURMAT(//, 4X, 'ERROR DETECTED.... UNSTABLE!')
00129
      200
00130
           CALL EXIT
00131
      67
           CONTINUE
00132
      ************************
00133
      C COMPUTES INPUT PRESSURE FUNCTION
      00134
        CALL GAUSS (PULSE, DT, T, HPUL)
00135
00136
      C COMPUTES CONSTANTS FOR THE BOUNDARY CONDITIONS
00137
00138
      ************************************
        CALL BOUND (SUN1, CON1, CON2, CON3, CON4)
00139
00140
      ******************************
00141
      C COMPUTES ARRAY FOR THE ITERATION
00142
      00143
           CALL COEF(VEL, ALPA, BETA, DEH, A, C, R, E, F, G)
00144
           GO TO(81,82,83), IMODE
00145
      81
          CONTINUE
00146
      C=*********************************
      C PERFECT ELASTIC
00147
00148
           CALL ELAST (VEL, DEN, PULSE, A, C, R, TEMP, IGEO)
00149
00150
           GD TO 987
00151
      82
          CONTINUE
00152
      C*********************************
00153
      C VOIGT SOLID
00154
      00155
           CALL VOIGT (VEL, BETA, DEN, ATEMP, TEMP, E, F, G, C, R, A, PULSE, S, IGEO)
00156
           GU TO 987
00157
      83
          CONTINUE
00158
      00159
       LINEAR WITH FREQUENCY
00160
      ************************
00161
           CALL LINER(VEL, ALPA, BETA, DEN, A.C.R.G, TEMP, ATEMP, PULSE, 1GEO)
00162
      987
           STOP
00163
           END
```

COMMON BLOCKS

/INDUT/(+6)

```
00001
               SUBROUTINE BOULD (SUM1, CON1, CON2, CON3, CON4)
00002
          ----SUBROUTINE BOUND------
              THIS SUBROUTINE COMPUTES APPROPRIATE CONSTANTS FOR THE
00003
        C
              FREE BOUNDARY AND RADIATION BOUNDARY CONDITIONS.
00004
        C
00005
        C
              ARGUMENT DEFINITIONS:
00006
        Ċ
               VELIX PENAVE VELUCITY AT FREE SURFACE.
00007
        C
               VELB: P-WAVE VELOCITY AT THE BOUNDARY OF A HALF-SPACE.
        č
               VELH: P-WAVE VELUCITY OF A HALF-SPACE.
80000
               DENI DENB DENH: DENSITIES.
00009
        C
00010
               ALPAI, ALPAB, BETAI, BETAH: ATTENUATION TERMS.
00011
               COMMON /Bh2/VEL1, VELB, VELH, DEN1, DENB, DENH, AUPA1, AUPAB, BETA1,
00012
00013
             1 BETAB
00014
               COMMON /BK1/DT, DX, TEND, T
               COMMON /BK3/IMUDL, IGEOP, IDENS, NPUL, NMAX, NMED, N2, NGEO
00015
00016
               IFLAG=1
00017
               GO TO(10,11,12), IMODE
00018
        10
               CONTINUE
00019
               A=DENH*VELH/DT
00020
               B=DENB*VELB*VELB/(2.0*DX)
00021
               COM=A+3.0*B
00022
               CON1=B/COM
00023 -
               CON2=A/COM
00024
               RETURN
00025
               CONTINUE
00026
                SUM1=2.0*DT*VEL1*VEL1/BETA1
00027
                A=DENH*VELH/DT
00028
                B=DELB*VELB*VELB/(2.0*DX)
00029
               C=BETAb*DENB/(2.0*DX*DT)
00030
               COM=A+3.0+B+3.0+C
00031
               CON1=A/COM
00032
               CON2=B/COM
00033
               CON3=C/COM
00034
                RETURN
00035
        12
               CONTINUE
00036
                SUM1=2.0+DT/BETA1
00037
                SUM2=1.0/3.0
00038
                A=ALPAB/DT
00039
               B=DENH+VELH/DT
               C=DENB*VELB*VELB/(2.0*DX)
00040
00041
                D=BETAB +C/OT
00042
               U=(1,U+A)+0+3,U+C+3,0*D
00043
               CON1=C/Q
00044
                CUN2=D/Q
00045
                CON3=B*(1.0+2.0*A)/Q
00046
               CON4=A+B/Q
00047
               RETURN
00048
                END
COMMON BLOCKS
/BK2/(+12)
                                                                            +4
                                                           +3
VELI
       +0
                 VELB
                         +1
                                 VELH
                                          +2
                                                  DEN1
                                                                   DENB
                                          +7
DENH
                                                           +10
                                                                   BETAB
        +5
                 ALPA1
                                  ALPAB
                                                  BETA1
                         +6
/BK1/(+4)
```

PAGE 1

COEF

LN47TP.FOR

```
SUBROUTINE COEF(VEL, ALPA, BETA, DEN, A, C, R, E, F, G)
00001
00002
       Cummanasussussus CUEF -----
00003
             THIS SUBROUTINE COMPUTES ARRAYS FOR THE ITERATION
00004
          00005
             DIMENSION VEL(1), ALPA(1), BETA(1), DEA(1), A(1), C(1), R(1), E(1)
00006
              DIMENSION F(1),G(1)
00007
              CUMMON /BKI/DT, DX, TEND, T
              CUMMUN /AK3/IMODE, IGEUP, IDENS, NPUL, NMAX, NMED, N2, NGEO
80000
00009
              RAMDA=(DT*PT)/(DX*DX)
00010
              RAMDA=RAMUA/2.0
00011
              RAMDT=RAMDA/(2.0*DT)
00012
              RCONST=RAMDA
              TCONST=RAMDT
00013
00014
              SON1=DT+DT/DX
00015
              DTDX=DT*DX
00016
              DO 10 I=1, NMAX
              VEL(I)=VEL(I)*VEL(I)
00017
       10
00018
              GO TO(21,22,23), 1MODE
00019
       *************************************
         CHECK DENSITY INFURNATION
00020
00021
       C***********
              GO TU(11,12), IDENS
00022
       21
00023
       C****************
00024
       C
          DENSITY IS CUUSTANT
00025
       00026
        11
              DO 20 1=2, NMED
              VELN=(VEL(I)+VEL(I=1))*RAMDA
00027
00028
              VELP=(VEU(I)+VEU(I+1))*RAMDA
00029
              A(1)=VELP
00030
              C(I)=VELN
              R(I)=2.0-VELN-VELP
       20
00031
00032
              RETURN
00033
       00034
           DENSITY INFORMATION IS GIVEN.
           CHANGE THE VELUCITY INTO ELASTIC MODULUS
00035
00036
       C *******************************
00037
       12
              DO 70 1=1, NMAX
00038
       70
              VEL(1)=VEL(1)*DEN(I)
00039
              DO 30 I=2.NMED
              RAMDA=RCONST/DEN(I)
00040
. 00041
              VELP=(VEL(I)+VEL(I+1))*RANDA
00042
              VELN=(VEL(I)+VEL(I=1))*RAMDA
00043
              C(I)=VELN
00044
              A(I)=VELP
00045
              R(I)=2.0=VELN=VELP
        30
00046
              RETURN
00047
        22
              GO TO(31,32), IDENS
00048
              DO 35 1=2, NMED
00049
              ATTN=(SETA(I)+BETA(I=1))*RAMDT
00050
              ATTP=(BETA(I)+BETA(I+1))*RAMOT
00051
              VELN=(VEL(I)+VEL(I=1))*RAMDA
00052
              VELP=(VEL(I)+VEL(I+1))*RAMDA
00053
              A(I)=ATTN
00054
              C(1) MATTP
00055
              R(I)=1.0+ATTN+ATTP
00056
              E(I)=VELP
```

```
FORTRAN V.4A(230) /KI
                                                  1-0CT-75
                                                                    22125
                                                                             PAGE 1-1
        LN47TP.FOR
COEF
00057
                F(1)=2.0-(VELP+VELN)
00058
        35
                G(1)=VELN
00059
                RETURN
00060
        32
                DO 60 I=1.NMAX
00061
                VEL(I)=VEL(I)*DEN(I)
                BETA(I)=BETA(I)+DEN(I)
00062
        60
00063
                DO 50 1=2. NMED
00064
                RAMDA=RCONST/DEN(I)
00065
                RAMDT=TCONST/DEN(I)
00066
                ATIN=(BETA(I)+FETA(I-1))*RAMDT
00067
                ATTP=(BETA(I)+BETA(I+1))*RAMOT
00068
                VELN=(VEL(1)+VEL(1-1))*RAMDA
                VELP=(VEL(I)+VEL(I+1)) *RAMDA
00069
                A(I)=ATTN
00070
00071
                C(1)=ATTP
00072
                R(I)=1.0+ATTN+ATTP
00073
                E(I)=VELP
00074
                F(I)=2.0=(VELP+VELN)
00075
        50
                G(I)=VELN
                RETURN
00076
        23
                GO TO(41,42), IDENS
00077
00078
                DO 40 I=1, NMED
00079
                ATT=(ALPA(1)+AUPA(1+1))/2.0
00080
                BIT=(BETA(1)+BETA(1+1))/2.0
00081
                VVV=(VEL(I)+VEL(I+1))/2.0
00082
                CCC=1.0+ATT/DF
                A(I)=SUN1
00083
00084
                G(I)=VVV/(DX*CCC)
00085
                C(I)=VVV*BTT/(CCC*DTDX)
00080
                R(I) = ATT/(DI + CCC)
00087
        40
                CONTINUE
00088
                RETURN
00089
         42
                DO 45 I=1, NMED
00090
                AII = (ALPA(I) + ALPA(I+1))/2.0
00091
                BTT=(BETA(1)+BETA(1+1))/2.0
00092
                VVV=(VEL(I)*DEN(I)+VEL(I+1)*DEN(I+1))/2.0
00093
                CCC=1.0+ATT/DT
00094
                A(1)=SUN1/DEN(I)
00095
                G(I)=VVV/(DX*CCC)
00096
                C(I)=VVV*BTT/(CCC*DTDX)
00097
                R(I)=ATT/(DT*CCC)
         45
00098
                CONTINUE
00099
                RETURN
00100
COMMON BLOCKS
/BK1/(+4)
         +0
DT
                 DX
                          +1
                                  TEND
                                           +2
                                                    r
                                                            +3
/BK3/(+10)
IMODE
         +0
                 IGEOP
                          +1
IDENS
         +2
                 NPUL
                          +3
                                  NHAX
                                           +4
                                                    NMED
                                                            +5
                                                                     N2
                                                                             +6
NGEO
         +7
```

```
GAUSS
       LN47TP.FOR FORTRAN V.4A(230) /KI 1-UCT-75
                                                              22125
                                                                      PAGE 1
00001
              SUBROUTINE GAUSS(F,DT, W, NMAX)
00002
       THIS SUBFOUTIVE COMPUTES TIME DEPENDENCE OF SOURCE FUNCTION
00003
       č
00004
             USING GAUSSIAN FUNCTION (BODY FORCE).
00005
       Ċ
             ARGUMENT DEFINITIONS.
00006
       C
               F: SOURCE TIME FUNCTION.
                DT: SAMPLING INTERVAL OF TIME.
00007
       Ċ
                NHAXI THE LENGTH OF ARRAY F.
80000
                WI PARAMETER DETERFING THE WIDTH OF THE SOURCE FUNCTION.
00009
00010
00011
              DIMENSION F(1)
00012
              TST=W#1.6
00013
              NMAX=IFIX(TST+2.0/DT)+1
              ALPA=2,0/(w#w)
00014
00015
              T=-TST-DT
00016
              DO 10 I=1, NMAX
00017
              T = T + DT
00018
              TT=T+1+ALPA
00019
              F(I)=EXP(-TT)
              RETURN
00020
00021
              END
SUBPROGRAMS CALLED
IFIX.
EXP.
SCALARS AND ARRAYS [ *** NO EXPLICIT DEFINITION = "%" NOT REFERENCED ]
                                                                               .S0000 6
#W
                       2
                                               *DT
                                                               *TST
               #T
                               *ALPA
ψĬ
               *NMAX
                       10
                               *TT
                                       11
                                                       12
TEMPORARIES
 .GAU16 13
                .00000 14
```

JAUSS [NO ERRORS DETECTED]

```
LN47TP, FOR FURTRAN V, 4A(230) /KI 1=0CT=75
30001
              SUBROUTINE MATRO(D,R,C,A,E,S,N1,N2,NMAX)
20002
             ----SUBROUTINE MATFO
             THIS SUFFICUTINE SOLVES TRI-DIAGUNAL MATRIX.
30003
       C
30004
10005
              DIMENSION D(1), R(1), C(1), A(1), S(1), E(1)
10006
              E(N1)=D(N1)/R(N1)
10007
              DU 10 I=N2, NMAX
30008
       10
              E(I)=(D(I)+A(I)+E(I=1))/C(I)
30009
              NHAX1=NHAX-1
30010
              DO 20 I=NMAX1, N1,-1
20011
       20
              E(I)=E(I)+E(I+1)*S(I)
10012
              RETURN
10013
              END
SUBPROGRAMS CALLED
SCALARS AND ARRAYS [ ** NO EXPLICIT DEFINITION - "%" NOT REFERENCED ]
                                                                                 .S0001 6
6N1
                 .soooo 10
                                        11
                                                *I
                                                        12
                                                                        13
                                                                                 Ċ
IXAMA
                                 R
                                                                *NMAX
        7
•N2
        15
```

22125

PAGE 1

4ATRO [NO ERRORS DETECTED]

TEMPORARIES

MATRO

```
SUBROUTINE ELAST(VEL, BETA, PULSE, A, C, R, TEMP, IGEO)
10001
10002
     CoossessesSUbROUTINE ELASTessessesses
          THIS SUBROUTINE CUMPUTES DISPLACEMENT DUE TO A PRESSURE SOURCE
10003
     C
          UN A FREE SURFACE IN PERFECT ELASTIC MEDIUM.
10004
     C
10005
          ARGUMENT DEFINITIONS:
     C
           TEMP: DISPLACEMENT AT PRESENT( N=TH) TIME STEP
10006
     C
           VEL: DISPLACEMENT AT (N=1)-TH TIME SIEP
10007
     C
10008
     Ċ
          BETA: DISPLACEMENT AT (N=2)-TH TIME STEP
10009
10010
          DIMENSION VEL(1), BETA(1), A(1), C(1), R(1), TEMP(1), PULSE(1)
          DIMENSION IGEO(1)
10011
           COMMON /BK1/DI, DX, TEND, T
10012
10013
           COMMON /8K3/1MODE, IGFOP, IDEAS, NPUL, NMAX, NMED, N2, NGEC
10014
           COMMON /BK4/SUM1.COM1.COM2.COM3.COM4
10015
     C*********************************
10016
     C INITIALIZATION
10017
           DO 40 I=1, WMAX
10018
           VEL(1)=0.0
10019
10020
           0.0=(1)A138
10021
           NST=3
10022
           NP=1
10023
           TIME=0.0
10024
           IF(NP.GT.NPUL) GO TO 42
10025
           TEMP(2)=PULSE(NP)
10026
           GO TO 41
10u27
     42
           NST=2
10028
      10029
     C CUMPUTES CURRENT DISPLACEMENT
     10030
10031
      41
           DO 50 I=MST.NMED
           TEMP(I) = A(I) * VEL(I+1) + R(I) * VEL(I) + C(I) * VEL(I-1) = BETA(I)
10032
10033
     C FREE BOUNDARY CONDITION
10034
10035
     C **********************************
        TEMP(1)=TEmP(3)
10036
10037
     10038
     C RADIATION BOUNDARY CONDITION
10039
      10040
           TEMP(RMAX)=CON1*(4.U*TEMP(RMED)=TEMP(R2))+CON2*VEL(NMAX)
10041
     10042
     C CHANGING THE ARRAY FOR THE NEXT TIME STEP
10043
      10044
           DO 60 I=1.0MAX
10045
           BETA(I)=VEL(I)
      60
10046
         VEL(I)=TEMP(I)
10047
     C-----
     C LIST THE DISPUACEMENT
10048
10049
     20050
           CALL LISTP(TEMP, TIME, IGEO, IGEOP, NGEO)
10051
           IF (TIME, GT, TEND) RETURN
10052
           TIME=TIME+DT
20053
           NP=NP+1
20054
           GO TO 888
20055
           END
```

TRAJIS

```
00001
             SUBROUTINE VOIGT (VEL, BETA, COM, ATEMP, TEMP, E, F, G, C, R, A, PULSE,
00002
           1 S.IGEO)
         -----SURROUTINE VOIGT -----
00003
           THIS SUBROUTINE COMPUTES DISPLACEMENT DUE TO A PRESSURE SOURCE ON
00004
      C
00005
           FREE SURFACE IN VOIGT SOLID.
00006
           ARGUMENT DEFINITIONS:
      C
            TEMPI DISPLACEMENT AT PRESENT( N=TH) TIME STEP
00007
      Ċ
80000
      C
             VEL: DISPLACEMENT AT (N=1)=TH TIME STEP
00009
            BETA: DISPLACEMENT AT (N=2) TH TIME STEP
00010
00011
             DIMENSION VEL(1), BETA(1), ATEMP(1), TEMP(1), COM(1), E(1), F(1)
00012
             DIMENSION G(1),C(1),F(1),A(1),PULSE(1)
00013
             DIMENSION S(1), IGEO(1)
             COMMON /6K3/IMUDE, 1GEOP, IDENS, NPUL, NMAX, NMED, N2. NGEO
00014
00015
             COMMON /BK4/SUM1, CON1, CON2, CON3, CON4
00016
             COMMUN /BK1/DT.DX.TEND.T
00017
       ***********************************
      C INITIALIZATIUM
00018
00019
       00020
             DO 10 1=1. MAX
00021
             VEL(I)=0.0
00022
       10
             BETA(1)=0.0
00023
             TERM=0.0
00024
             NP=1
00025
             TIME=DT
00026
             ING=1
00027
             HST1=3
30028
             NST2=4
00029
       C COMPUTES THE CUEFFICIENT OF THE TRI-DIAGONAL MATRIX
00030
00031
       00032
             ATEMP(3)=C(3)/R(3)
00033
             DO 50 I=NST2.NMED
00034
             COM(I)=R(I)+A(I)+ATEMP(I=1)
       50
             ATEMP(I)=C(I)/COM(I)
00035
00036
             IF ( up. GT. NPUL) GO TO 40
             DISP=PULSE(NP)
00037
00038
             TEMP(2)=DISP
00039
       777
             QTERM=TERM+SUM1*(VEL(3)=VEL(1))
00040
             IF(ING.EQ.2) DISP=QTERM
00041
             DO 21 I=NST1.NMED
             S(1)=E(I)*VEL([+1)+F(I)*VEL(1)+G(I)*VEL(1=1)*C(1)*BETA([+1)*
00042
00043
           1 (2,0=R(I))*BETA(I)=A(1)*BETA(I=1)
00044
             CONTINUE
00045
             S(NST1)=S(NST1)+DISP*A(NST1)
00046
       C+***********************
       C SOLVE THE TRI-DIAGUNAL MATRIX
00047
00048
          COMPUTES CURRENT DISPLACEMENT
00049
       C****************
00050
             CALL MATRO(S,R,COM,A,TEMP,ATEMP,NST1,NST2,NMED)
00051
       ************************************
00052
          FREE BOUNDARY CONDITION
00053
       ************************
00054
             TEMP(1)=TEMP(3)+QTERM
00055
       00056
       C RADIATION BOUNDARY CONDITION
```

```
FORTRAN V.4A(230) /KI 1-0CT-75
                                                               22125
                                                                       PAGE 1=1
VOIGT
       LN47TP_FOR
00057
              TEMP(NMAX)=CON2+(4.0+TEMP(NMED)=TEMP(NZ))+CON3+(4.0+TEMP(NMED)=
00058
             1 TEMP(N2)+3,0*VEL(NMAX)-4,0*VEL(NMED)+VEL(N2))+CON1*VEL(NMAX)
00059
00060
       CHANGING THE ARRAY FOR THE NEXT TIME STEP
00061
00062
       C******************************
              DO 30 1=1.NMAX
00063
00064
               BETA(I)=VEL(I)
00065
        30
               VELCI)=TEMP(I)
00066
               TERN=BETA(1)=BETA(3)
00067
           ******************
           LIST THE DISPLACEMENT
00068
        C
00069
               CALL LISTP(TEMP, TIME, IGEO, IGEOP, NGEO)
00070
00071
               IF(TIME, GT, TEND) RETURN
00072
               TIME=TIME+DT
00073
               NP=NP+1
00074
               IF(ING.EQ.2) GO TO 777
               GO TO 888
00075
00076
        40
               NST1=2
00077
               NST2=3
87000
               ING=2
00079
               CXT=C(2)+A(2)
00080
               ATEMP(2)=CXT/R(2)
00081
               DO 20 1=3.NMED
00082
               CUM(I)=R(I)=A(I)*ATEMP(I=1)
00083
        20
               ATEMP(I)=C(I)/COM(I)
00084
               GO TO 777
               END
00085
COMMON BLOCKS
/BK3/(+10)
       +0
IMODE
                IGEOP
                        +1
                                                NPUL
                                                                NMAX
                                IDENS
                                        +2
                                                        +3
NMED
        +5
                N2
                        +6
                                NGEO
                                        +7
/BK4/(+5)
                CON1
SUMI
        +0
                                CON2
                                        +2
                        +1
CONS
        +3
                CON4
                        +4
/BK1/(+4)
                                                        +3
DT
                DX
                        +1
                                TEND
                                        +2
SUBPRUGRAMS CALLED
MATRU
        LISTP
SCALARS AND ARRAYS [ *** NO EXPLICIT DEFINITION - ** NOT REFERENCED ]
*NST1
                                                                        5
                                                                                 BETA
        1
                #QTERM
                        2
                                 IGEO
                                        3
                                                 COM
                                                                 VEL
*DISP
                        10
                                                *CXT
                                                        12
                                                                        13
                                                                                PULSE
                                                                                       14
        7
                                                                 G
                 Ε
                                 S
                                        11
                                                                 ,s0002 2i
                                                                                 .80001 22
                 .80004 16
                                 .S0003 17
#ING
        15
                                                        20
                                                 A
                                #NP
*TERM
        23
                 S0000 24.
                                        25
                                                 ATEMP
                                                                        27
                                                                                        30
                                                        26
                                                                *TIME
```

34

C

35

TEMP

31

*NST2

32

*I

33

00056

```
29-SEP-75
                          FORTRAN V.4A(230) /KI
                                                                     14153
LINER
         LN4X0E.FOR
                                                                              PAGE 1-1
 00057
                 CONTINUE
         66
                 DO 60 I=NSTP.NMED
 00058
 00059
         60
                 TEMPP(I) = G(I) * (IEMPD(I+1) = TEMPD(I)) * C(I) * (TEMPD(I+1) = TEMPD(I) *
 00060
               1 SECD(I)=SECD(I+1))+R(I)*SECPP(I)
 00061
                 TEMPP(1) == TEMPP(2)
 00062
         C**********************
 00063
             CHANGING THE ARRAY FOR THE NEXT TIME STEP
 00064
 00065
                 DO 55 1=1, NMAX
 00066
                 FIRD(I)=SECD(I)
 00067
                 SECD(I)=TEMPD(I)
 00068
                  FIRPP(I)=SECPP(I)
 00069
                 SECPP(I)=TEMPP(I)
 00070
         55
                 CONTINUE
 00071
 00072
             LIST THE DISPLACEMENT
 00073
 00074
                 WRITE(12,300)TEMPD(12),TEMPD(22),TEMPD(42),TEMPD(82),TEMPD(162)
 00075
         300
                 FORMAT(5E16.6)
                 WRITE(3,400) TIME, TEMPD(13), TEMPD(123), TEMPD(N2)
 00076
         400
 00077
                 FORMAT(2X,F10,5,3E20,8)
 00078
                 IF(TIME, GT. TEND) RETURN
 00079
                 NP=NP+1
 00080
                 TIMERTIME+DT
 00081
                 GO TO 999
 00082
                 END
 COMMON BLOCKS
 /BK3/(+10)
         +0
                                            +2
 IMODE
                  IGEOP
                           +1
                                   IDENS
                                                    NPUL
                                                             +3
                                                                      NMAX
 NMED
         +5
                  N2
                           +6
                                   NGEO
                                            +7
 /BK1/(+4)
 DT
                  DX
                                   TEND
                                            +2
         +0
                           +1
 T
         +3
 /BK2/(+12)
 VEL1
         +0
                  VELB
                           +1
                                   YELH
                                            +2
                                                     DEN1
                                                             +3
                                                                      DENB
         +5
                                                             +10
 DENH
                                                                               +11
                  ALPA1
                                   ALPAB
                                            +7
                                                                      BETAB
                           +6
                                                     BETA1
 /BK4/(+5)
 SUM1
         +0
 CON1
         +1
                  CON2
                           +2
                                   CON3
                                            +3
                                                     CON4
 SUBPROGRAMS CALLED
SCALARS AND ARRAYS [ *** NO EXPLICIT DEFINITION = ** NOT REFERENCED ]
                                    FIRPP
                                                                                       *NSTP
  FIRD
         1
                  %IGEO
                                                      SECD
                                                             3
                                                                       SECPP
                                                                                        .80002 13
                                     .50003 10
                                                     *NST
  G
         6
                   PULSE
                          7
                                                                               12
                                                             11
                                                                       A
  ,80001 14
                   .50000 15
                                   *NP
                                            16
                                                      TEMPP
                                                             17
                                                                      *TIME
                                                                               20
                                                                                                21
         22
                           23
                                    TEMPD
```

```
SUBROUTINE LIST(IMODE, IDENS, DT, DX, T, NITER)
00001
00002 C----SUBROUTINE LIST-----
00003 C
             THIS SUBROUTINE LIST PARAMETERS OF THE MODEL.
00004 C----
              COMMON /INOUT/IN, IOUT, ITAPE, IDECL, IDECS, IDEINC
00005
00006
              GO TO(11.12.13).IMODE
              WRITE(IOUT. 100)
00007
      11
              FORMAT(//.4X, 'PERFECT ELASTIC MEDIUM')
00008 100
00009
              GO TO 14
              WRITE(IOUT. 200)
00010 12
00011
      200
              FORMAT(//,4X,'VOIGT SOLID')
00012
              GO TO 14
              WRITE(IOUT, 300)
00013 13
00014
      300
              FORMAT(//.4X.'LINEAR WITH FREQUENCY')
00015 14
              GO TO(15,16), IDENS
00016 15
              WRITE(IOUT, 400)
              FORMAT(/,4X, 'DENSITY IS ASSUMED TO BE CONSTANT')
      400
00017
              GO TO 23
00018
00019
      16
              WRITE(IOUT, 500)
              FORMAT(/,4x,'DENSITY INFORMATION IS GIVEN')
      500
00020
00021
      23
              CONTINUE
00022
              WRITE(IOUT, 600) DT, DX, T, NITER
              FORMAT(///,8X,'TIME
                                  INCREMENT='.F10.5./,
00023 600
00024
            1 8X, 'DISTANCE INCREMENT=', F10.5,/,
            2 8X, 'TEMPORAL SOURCE WIDTH=',F10.5,/,
00025
00026
            3 8X, 'NUMBER OF ITERATION=',15,/.
            4 8X, 'TIME', 4X, 'X-INDEX', 10X, 'DISPLACEMENT'
00027
00028
              RETURN
00029
              END
```

00001 00002	C	SUBROUTINE LISTP(A, TIME, IGEO, IGEOP, NGEO)
00002 00003 00004	C	THIS SUBROUTINE LIST THE OUTPUT GEOPHONE DISPLACEMENT IN LINE-PRINTER AND MAGNETIC TAPE.
00005	C	
00006		DIMENSION A(1), IGEO(1)
00007		COMMON /INOUT/IN, IOUT, ITAPE, IDECL, IDEINC
00008		GO TO(11,12), IGEOP
00009	11	DO 10 I=IDECS, IDECL, IDEINC
0 0010		WRITE(IOUT, 400)TIME, I, A(I)
00011	10	WRITE(ITAPE, 400)TIME, I, A(I)
00012	400	FORMAT(2X,F10.5,2X,16,4X,E20.8)
00013		RETURN
00014		INN=1
00015	40	IT=IGEO(INN)
00016		WRITE(IOUT, 400) TIME, IT, A(IT)
00017		WRITE(ITAPE, 400) TIME, IT, A(IT)
00018		IF(INN.GT.NGEO) RETURN
00019		INN=INN+1
00020		GO TO 40
00021		END

APPENDIX C

Computer Program and User's Manual for Two-dimensional Finite Difference Scheme

This computer program computes vertical and horizontal displacements of an elastic wave in a two-dimensional orthogonal cartesian coordinate system. In making a general computer program for an two-dimensional, inhomogeneous wave equation by a finite difference scheme, large core-memory is required, because we must store all elastic constants in addition to the 4 working arrays at each grid point. So we selected three types of model to reduce this large memory requirement. This program can handle the following three types of model:

- (1) One-layered elastic half-space.
- (2) Vertical fault in an elastic half-space.
- (5) Localized arbitrary shaped inhomogeniety extended in the horizontal direction in an elastic half-space.

The geometry of the vertical fault and localized inhomogeneity model is left-justified, which means the discontinuity of half-space starts from the left and ends at right side of model(see Figure C-2 and Figure C-3).

Throughout the computer program, we used the same sampling interval in x- and y-direction. Also we used an imaginary grid line at y=-DY to solve a free boundary condition.

The pre-assigned input-output logical units are:

- 2- Input logical unit.
- 3= Output logical unit for line printer.
- 12= Output logical unit except line printer.
 The format of logical unit 12 is the same as logical unit 3 except that there is no heading.

Figure C-1 shows how to prepare input cards to execute this program. Each BLK, contains parameters of the model and each BLK, will be read by a format described previous FMT (format) card. The definitions of each block are written below.

BLK1

The BLK1 contains DT, DX, T, TX, ALPA1, BETA1, DEN1, DEN2, IGEO, NGEO sequentially.

- 1. Dr: Sampling interval in time.
- 2. DX: Sampling interval of distance.
- 3. T: Parameter determine the width of temporal source function (see source function).
- 4. TX: Parameter which controls the extent of the source region (see source function).

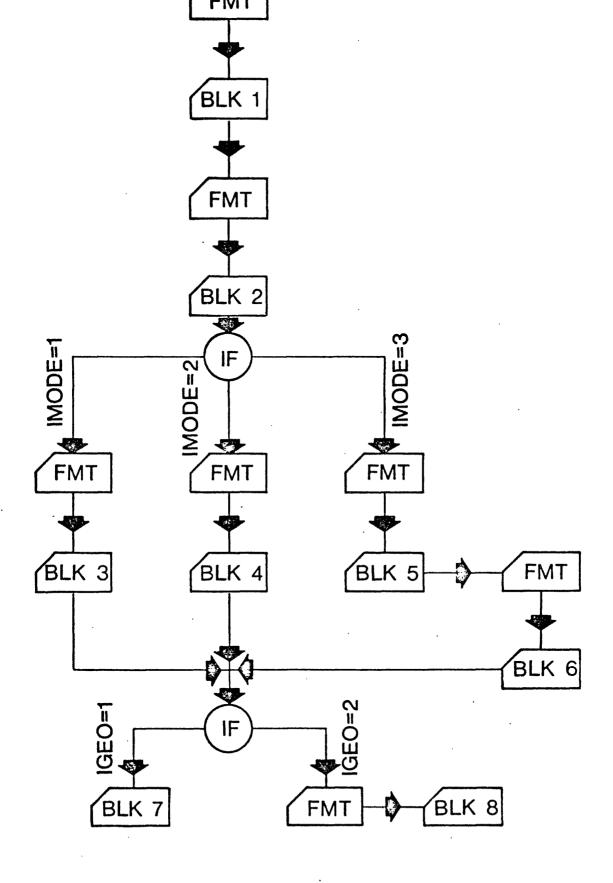


Figure C-1. Preparation of input cards for two-dimensional finite difference schemes.

- 3. T: Parameter which determines the width of temporal source function (see Source function).
- 4. TX: Parameter which controls the extent of source region (see Source function).
- 5. ALPA1: P-wave velocity of the upper medium.
- 6. BETA1: S-wave velocity of the upper medium.
- 7. DEN1: Density of the upper medium.
- 8. IGEO: Control number for the output.

IGEO-1. Either vertical or horizontal index of the output arrays is fixed and output arrays are regularly spaced.

IGEO-2. Output arrays are irregularly spaced.

9. NGEO: Number of the output geophone.

BLK2

- 1. NITER: Number of iteration.
- 2. INODE: Control number for the model type: IMODE=1, One-layered half-space. IMODE-2, Vertical fault model.

IMODE=3. Localized inhomogeneity model.

- 3. ISYN: Control number for the symmetry of the model. ISYM-1. Symmetrical model. ISYM=2. Asymmetrical model.
- 4. Imax: Horizontal dimension of the model.
- 5. JIAX: Vertical dimension of the model.
- 6. IST: Parameter for the source region (see source function).
- 7. IFN: Parameter for the source region. 8. JST: Parameter for the source region.
- 9. JFN: Parameter for the source region.

BLK3

- 1. ALPA2: P-wave velocity of the lower medium.
- 2. BETA2: S-wave velocity of the lower medium.
- 3. DEN2: Density of the lower medium.
- 4. JINT: Vertical index number of the horizontal interface (see Figure C-2).

BLK4

- 1. Alpa2: P-wave velocity of the fault medium.
- 2. BETA2: S-wave velocity of the fault medium.
- 3. DEN2: Density of the fault medium.
- 4. JINT: Vertical index number of the horizontal Interface (see Figure C-2).
- 5. IINT: Horizontal index number of the vertical interface (see Figure C-2).

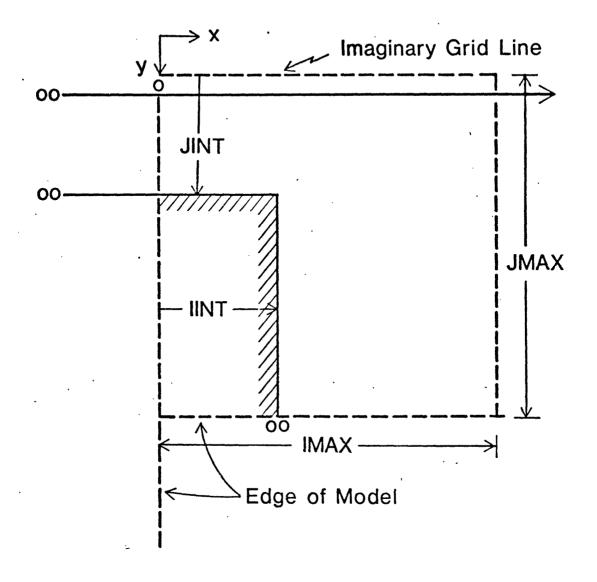


Figure C-2. Definition of parameters for vertical fault model.

BLK5

- 1. JTOP: Vertical index which specifies the upper boundary of the localized inhomogeneity model.
- 2. JBOT: Vertical index number which specifies the lower boundary of the inhomogeneous region.
- 3. IRIG: Horizontal index which specifies the right boundary of the inhomogeneous region.

For further illustration, see Figure C-3.

BLK6

- 1. ALPA: P-wave velocity inside the inhomogeneous region.
- 2. BETA: S-wave velocity inside the inhomogeneous region.
- 3. DEN: Density inside the inhomogeneous region.

These parameters will be read as:

((ALPA(I,J), BETA(I,J), DEH(I,J), I=1, ITOTX), J=1, JTOTY).

BLK7

- 1. Idecs: The starting x- or y-index number for the regularly spaced geophones.
- 2.IDECL: The ending x- or y-index number for the regularly spaced geophone.
 (IDECS IDECL)
- 3. IDEINC: Index interval between output array.
- 4. ICONS: Fixed index number for the output.
- 5. ITERM: Control number for the fixed index of the output. ITERM=1, Horizontal index is fixed. ITERM=2. Vertical index is fixed.

BLK8

This block contains the information about irregularly spaced output.

- 1. ICOUL: Array which contains the horizontal index number for the irregularly spaced output.
- . 2. JROW: Array which contains the vertical index number for the irregularly spaced output.

These arrays will be read as (ICOUL(I), JRON(I), I=1,NGEO)

Source function

Before reading this section, the users are recommended to read Aboudi's paper (1971) for clarity.

As an input source function, we used a body force. Let the body force be defined as

Fi = 1/2 (x, y) glt)

where π is body force. It is obvious that $f_{\alpha(x,y)}$ is the

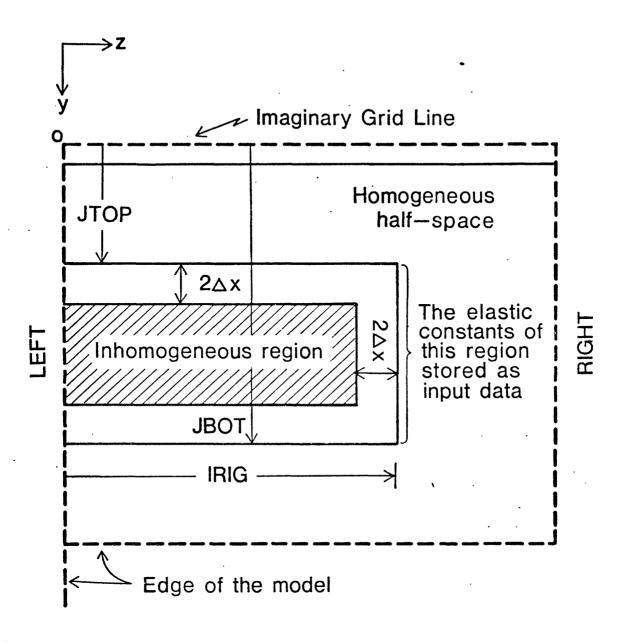


Figure C-3. Definition of parameters for localized inhomogeneity model.

function determines the spacial dependence of body force and g(t) is the time dependence of the source function. We used a symmetrical source function, so the spacial extent and shape of $f_{\alpha(x,y)}$ in x- and y-direction are the same.

Let the center of the source be located at (nDX,mDX) and the spacial dependence is shown in the Figure C-4. The spacial extent of this function is 4DX. But at $x=(n\pm 4)DX$, the function values are zero. So we defined spacial extent TX as shown in Figure C-4. The smallest possible source extent is TX=DX, which is the cloest approximation of the point source in this program. For this example, input parameters for the source region are:

TX-3DX, IST-n-3, IFN-n+3, JST-m-3, JFN-m+3.

In this program there are limitation for the source region:

JST or IST ≥ 3, JFN or IFN < JMAX-2 or Imax-2.

For the temporal dependence of the source function, we used the following function:

The width of the temporal source width T is defined as the : following relation

$$T = \sqrt{\frac{2}{\alpha}}$$
.

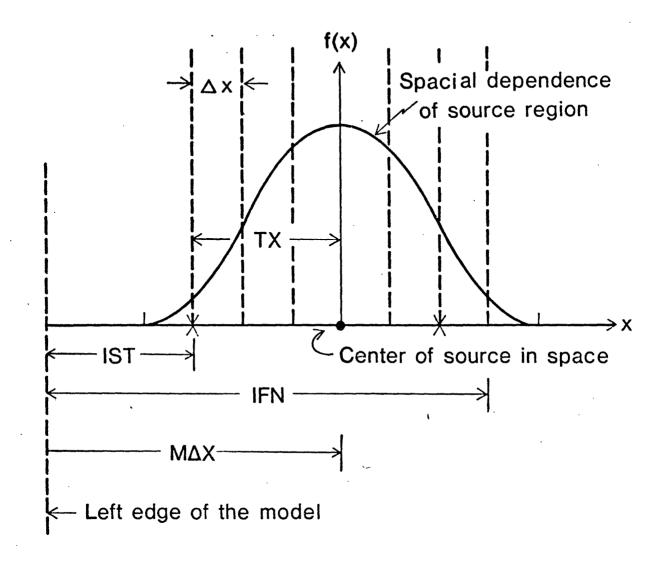


Figure C-4. Description of source function.

11 NT: HURIZUNTAL INDEX OF THE VERTICAL INTERFACE. JTOP: UPPER VERTICAL INDEX OF THE INHOMOGENEOUS REGION.

IMUDE: CONTRUL WUMBER FOR THE MODEL TYPE:

=11 OLE-LAYERED HALF-SPACE MODEL.

=2: VERTICAL FAULT MODEL.

JEUT: LOWER VERTICAL INDEX OF THE INHOMOGENEOUS PEGION.

IRIG: RIGHT HORIZODTAL INDEX OF THE INHOMOGENEOUS REGION.

ISYM: CONTROL NUMBER FOR THE SYMMETRY OF THE MODEL.

3=: LOCALIZED INHOMOGENEOUS ARBITPARY SHAPED NODE.

00048

00049

00050

00051

00052

00053

00054

00055

00056

C

C

C

C

C

C

C

135

```
00113
          RECOGNIZE THE OUTPUT GEOPHONE PATTERN.
00114
       00115
       29
             GO TO(41,42), IGEO
00116
       41
             READ(IA, 300) IDECS, IDECL, IDEING, ICONS, ITERM
00117
       300
             FORMAT(515)
00118
             GO TO 19
00119
             READ(Id, 100) FHT
       42
            READ(IN, FRIT)(ICOUL(I), JROW(I), I=1, NGEO)
00120
00121
00122
       C.
           CHECK THE STABILITY CONDITION.
       00123
       19
00124
           GO TO(14,14,15), IMODE
00125
             VMAX1=ALPA1*ALPA1+BETA1*BETA1
       14
00126
             VMAX2=ALPA2*ALPA2+BETA2*BETA2
00127
             VMAX=AMAX1(VMAX1,VMAX2)
00128
             GO TO 18
00129
              VHAX=ALPA1*ALPA1+BETA1*BETA1
             DO 20 I=1.ITOTX
00130
00131
             DO 20 J=1,JTOTY
00132
             DMAX=ALPA(I,J)+ALPA(I,J)+BETA(I,J)*BETA(I,J)
00133
       20
             IF(DMAX.G1.AMAX) VMAX=DMAX
00134
       18
             RATIO1=DT/DZ
00135
             RATIO2=1.0/SORT(YMAX)
00136
             IF(RATIO1.LT.RATIO2) GO TO 17
00137
             WRITE(IOUT, 200)
00138
       200
             FURNAT(//,4X, 'ERROR DETECTED., UNSTABLE!)
00139
             CALL EXIT
00140
       00141
       C COMPUTATION OF THE SOURCE FUNCTION.
       00142
00143
       17
             CALL GAUSS(PULSE, DT. T. NPUL)
             CALL SPAC(GX, GY, TX, DX, XSPA)
00144
00145
             1COUNT=1FN=1ST+1
00146
             JCOUNT=JFN=JST+1
 00147
             DO 22 1=1, ICOUNT
00148
            ITEM=1+1
. 00149
            DO 22 J=1.JCOUNT
 00150
            JTEM=J+1
 00151
            FX(I,J)=GY(ITEM)*GX(JTEM)
00152
       22
            FY(I,J)=GX(ITEH)*GY(JTEM)
 00153
       C INITIALIZATION OF THE DISPLACEMENTS.
 00154
 00155
       DO 10 I=1,18AX
00156
00157
             DO 10 J=1,JMAX
00158
             A(I,J)=0.0
 00159
             B(I,J)=0.0
00160
             C(I,J)=0.0
00161
       10
             D(I,J)=0.0
             IF(ISYM, EQ. 1) ISET=IST+IFN=1
 00162
 00163
             CALL LIST(IMOLE, ALPA1, ALPA2, HETA1, BETA2, DEN1, DEN2, DX, TX, T)
 00164
       00165
       С
            CUMPUTES SUME CONSTANTS.
 00166
           00167
            RAMDA=DT+DT/(DX+DX)
 00168
            RDT=RAMDA/4.0
```

00224

```
CON1=ALPA1+ALPA1+RAMDA
00169
               COM2=(ALPA1*ALPA1=BETA1*BETA1)*RABDA/4.0
00170
00171
               CON3=BETA1*BETA1*RAMDA
               SOW2=(ALPA1+ALPA1=2.0+BETA1+BETA1)/(ALPA1+ALPA1)
00172
00173
               IDX=INAX=1
               I-XAML=YOL
00174
               IF(1MODE, EQ. 3) GO TO 32
00175
00176
              ALPAB=(ALPA1+ALPA2)/2.0
              BETAB= (BETA1+BETA2)/2,0
00177
00178
               DE08=(DEN1+DEN2)/2.0
00179
               POW1=ALPAB*ALPAB*RAMDA
               PUN2=(ALPAN*ALPAB*BETAB*BETAB)*RDT
00180
00181
               PON3=BETAB*BETAB*RAMDA
00182
               TON1#ALPA2#ALPA2#RAMDA
00183
               TOP2=(ALPA2*ALPA2=BETA2*BETA2)*RANDA/4.0
00184
               TON3=BETA2*BETA2*RAMDA
00185
               CALL BOUND (BETA1, BETA1, BETA3, DEN1, DEN1, DENB, RDT, C1)
00186
               CALL BOUND (ALPA1, ALPA1, ALPA6, DEN1, DEN1, DENB, PDT, C2)
               CALL BOUND (BETA1, BETAB, BETA2, DEN1, DEN8, DEN2, RDT, S1)
00187
00188
               CALL BOUND (ALPA1, ALPAB, ALPA2, DEN1, DECB, DEN2, RDT, S2)
               CALL BOUND (BETAB, BETAZ, BETAZ, DENB, DENZ, DENZ, ROT, T1)
00189
00190
               CALL BOUND (ALPAB. ALPA2. ALPA2. DENB. DEU2. DEN2. RDT. T2)
00191
               S3=S2-2.0*S1
00192
               C3=C2-2.0+C1
               T3=T2=2.0*T1
00193
00194
               1F(IMODE, EQ. 1) GO TO 43
               CALL BOUND (BETAI, BETAB, BETAB, DENI, DENB, DENB, RDT, DY1)
00195
00196
               CALL BOUND (ALPA1, ALPAB, ALPAB, DEN1, DENB, DENB, ROT, DY2)
00197
               DY3=DY2-2.0*DY1
00198
               CX1=-C1
00199
               CX2=-C2
00200
               Cx3=-C3
00201
               SX1==S1
00202
               5X2=-S2
00203
               SX3==S3
00204
               TX1=-T1
00205
               TX2=-T2
00206
               TX3==T3
00207
               DX1==DY1
00208
               DX2=-DY2
00209
00210
00211
        C
           VERTICAL FAULT HODEL.
00212
        CALL FAULT(A, B, C, D, IEAX, JMAX, PULSE, FX, FY, JINT, IINT, ICOUL, JROW)
00213
00214
               GO TO 999
00215
            ONE-LAYERED HALF-SPACE MODEL.
00216
        С
00217
00218
        43
             CALL LAYER (A, b, C, D, Inax, J, AX, pulse, FX, FY, JINT, ICOUL, JROW)
00219
               GO TO 999
00220
00221
        C LOCALIZED INHUMOGENEOUS MODEL.
00222
        00223
        **********************************
```

C CHANGE VELOCITIES INTO LAME'S CONSTANTS AND DENSITY INTO

MAIN.	LN47TN	.FOR	FORTRAN	V.4A(230) /KI	2-0CT-75	•	2139	PAGE	1-4	
00225	C (D	T*DT)/(DX+	UNAUE.e	TTUS		<i>:</i>		•			
00225	C****	1 - 0 1) / (0 % ,	LDYADEKO	****						•	
00223	32	DU 90 I=1	. ተዋለቸች	~~~~	******		1 11 11				
00227	34		•								
00229		DO 90 J=1,JTOTY CC=DEN(I,J)*dETA(I,J)*BETA(I,J)									
00227		BB=DEN(I									
00231		ALPA(1,J)			A(1/0/						
00232			-								
00232	90	BETA(I,J)=CC DEN(I,J)=RAMDA/DEN(I,J)									
00234	,,	CALL INHOMO(A,H,C,D,IMAX,JMAX,PULSE,FX,FY,ALPA,BETA,DEN,									
00235	1	JTOP, JEOT					, ,,,,,,	,,			
00236	999	STOP	,,,,,,,,,,	.01%/010.		, 01.0,					
00237	,,,	END									
00231		nii b									
Сомиои	BLOCKS										
-		,									
/GEOPH/	/(+7)										
IGEO	+0	ITERM	+1	IDECS	+2	IDECL	+3	NGEO	+4		
IDEINC	+5	ICONS	+6	•							
/INDVI/	/(+3)										
IN	+0	IOUT	+1	ITAPE	+2		•				
/BK1/(4	+15)										
IDX	+0	JDY	+1								
SONI	+2	SON2	+3	DT	+4	NPUL	+5	ISYM	+6		
ISET	+7	IST	+10	IFN	+11	JST	+12	JFN	+13		
NITER	+14			•							
/BK2/(+	+11)										
CONI	+0	CON2	+1	CON3	+2	PON1	+3	PON2	+4		
P083	+5	TONL	+6	TON 2	+7	IDN3	+10				
/8k3/(+	+11)		-		•						
C1	+0	C2	+1			•					
C3	+2	S1	+3	S 2	+4	S 3	+5	Ti	+6		
T 2	+7	T3	+10		-						
/BK4/(+17)										
DY1	+0	DY2	+1	DY3	+2	CX1	+3			1	
CX2	+4	CX3	+5	SX1	+6	SX2	+7	SX3	+10		
TX1	+11	TX2	+12	Tχ3	+13	DX1	+14	DX2	+15		
DX3	+16										
SUBPRU	GRAMS CA	LLED									
GAUSS	SQRT.	FAULT	AMAX1.	LAYER	INHOMO	•				•	
SPAC	EXIT	BOUND	LIST	MD 4 EIV							
SCALARS	S AND AR	RAYS ["#	NO EXP	LICIT DE	FINITION	- u Su Vi	or refer	RENCED]			
*DEN2	1	#JTOP	2	*T	3	*ITEM	4	XAMV*	5	ALPA	6
TWIL#	431	BETA	432	*TX	1055	*ITOIX	1056	# BB	1057	XAMC*	1060
#DEN1	1061	В	1062	*JCOUNT	16132	#DMAX	16133	*DZ	1013		16135
ICOUL	16136	FMT	10220	JROW	16240	G¥	16322	*RATIO1	1633	4 *IMODE	16335
*KSPA	16336	*RATIO2		#IR1G	16340	HIINT	16341	#J	1634		16343
	6 16344	PULSE	16345	.80005		*IMAX	16512	D	1651		
	3 33564	A	33505	50002		*ICOUNT		.50001	-		50640
	0 50652	*DX	50653	*DENB	50654	*JTOTY	50655	*JBUT	5065		50657

```
BOUND LN47TN.FUR FURTRAN V.4A(230) /KI 2-OCT-75
                                                              2139
                                                                      PAGE 1
 00001
              SUBROUTINE HOUND (AN, A, AP, DN, D, DP, RDT, COMST)
 00002
        Commence SUBROUTINE BOUND -----
 00003
             THIS SUBROUTINE COMPUTES DERIVATIVES OF LAME CONSTANT AT THE
        C
 00004
        С
              INTERFACE OF ONE-LAYERED OR VERTICAL FAULT MODEL.
        C
 00005
              ARGUMENT DEFINITIONS.
        Č
                 AN, A, AP: P- OR S-WAVE VELOCITY.
 00006
        Ċ
                 DN.D.DP: DENSITY.
 00007
 80000
                CONST: DERIVATIVE OF LAME CONSTANT/DENSITY.
 00009
 00010
              CUNST=AP+AP-AN+AF+A+A+(DP-DH)/D
               COAST=CONST*RDT
 00011
 00012
               RETURN
 00013
               END
 SUSPROGRAMS CALLED
 SCALAPS AND ARRAYS [ "*" NO EXPLICIT DEFINITION . "%" NOT REFERENCED ]
 #DD
                #AP
                                *DN
                                       3
                                               *AN
                                                               #D
                                                                     5
                                                                              #A
*CONST 7
                       10
                *RDT
TEMPURARIES
 BOUND [ NO ERRORS DETECTED ]
```

SUBROUTINE LAYER(A.B.C.D.IMAX.JMAX.PULSE.FX.FY.JINT.

00001

```
00002
             1 ICOUL, JROW)
        Communication SUBROUTINE LAYER -----
F0000
00004
        C
             THIS SUBROUTINE COMPUTERS VERTICAL AND HORIZONTAL DISPLACEMENTS
00005
             FOR A ONE-LAYERED HALF-SPCAE MODEL
00006
        C---
              DIMENSION A(IMAX, JMAX), R(IMAX, JMAX), C(IMAX, JMAX), D(IMAX, JMAX)
00007
COOCH
               DIMENSION ICOUL(1), JROW(1)
00009
               DIMERSION PULSE(1), FX(5,5), FY(5,5)
00010
              COMMON /GEOPH/IGFO, ITERM, IDECS, IDECL, NGEO, IDEINC, ICONS
00011
              COMMON /BK1/IDX, JDY, SON1, SUN2, DT, NPUL, ISYM, ISET, IST, IFN.
00012
             1 JST. JEN, NITER
00013
               COMMON /BK2/CON1/CON2/CON3/PON1/PON2/PON3/TON1/TON2/TON3
00014
               COMMOR /6K3/C1,C2,C3,S1,S2,S3,T1,T2,T3
00015
               JNEGA=JINT-2
00016
              JIMTH=JIHT=1
00017
               JINT1=JINT+1
00018
               JINTP=J10T+2
00019
               IDIMX=IMAX
00020
               XAMC=YMIGC
00021
               TIME=0.0
00022
               NP=1
               TEND=DT*NITER
00023
00024
        999
               TIME=TIME+DT
00025
        C COMPUTATION FOR THE HOMOGENEOUS REGION
00026
00027
        **********************
00028
               CALL ITER(A, B, C, L, IDIMX, JDIMY, COM1, COM2, COM3, 2, IDX, 2, JNEGA)
               CALL ITER(A,B,C,P,ID1MX,JD1 4Y,TOM1,TOM2,TOM3,2,1DX,JINTP,JDY)
00029
00030
        C***********************
          COMPUTATION FOR THE HORIZUNIAL INTERFACE.
00031
00032
        *****************
00033
               CALL INTERY (A, B, C, D, CUN1, CUR2, CON3, C1, C2, C3, 2, I2,
00034
             1 JINTE, IDIMX, JDJMY)
00035
               CALL INTERY(A, E, C, D, PON1, PON2, PON3, S1, S2, S3, 2, 12,
00036
             1 JINT, 101MX, JDIMY)
00037
               CALL 1: TERY (A, B, C, D, TUN1, TUN2, TON3, T1, T2, T3, 2, 12,
00038
             1 JINT1, IDIMX, JDIMY)
00039
              IF(MP.GT.MPUL) GO TO 77
- 00040
             **********
           COMPUTATION FOR THE SHURCE REGION
00041
00042
        00043
              DU 52 I=IST, IFN
00044
              ITEN=I=IST+1
00045
               DO 52 J=JST, JFN
              JIEM=J=JST+1
00046
00047
              B(I,J)=F(I,J)+FX(ITEM,JTEM)*PULSE(NP)
00048
        52
              D(1,J)=D(1,J)+FY(ITEM,JTEM)*PULSE(NP)
00049
        77
              CONTINUE
00050
        C***************
00051
            SYMMETRY CONDITION
        C
00052
        C***********************************
00053
               GU TU(71,72), ISYM
00054
        71
               DU 40 J=2, JMAX
00055
               B(1,J)==P(ISET,J)
 00056
        40
               D(1,J)=D(ISET,J)
```

LAYER LN47TN.FOR FURTRAN V.4A(230) /KI 2=0CT=75 2139 PAGE 1-1 00057 00058 FREE BOULDARY CONDITION. 00059 *********************************** 00060 72 DO 30 [=2.10X 00061 B(I,1)=B(I,3)+D(I+1,2)=D(I=1,2)00062 30 D(I,1)=D(I,3)+SO(2*(B(I+1,2)-B(I-1,2))00063 GO TO(83,84), ISYM 00064 83 B(1,1) = -B(ISET,1)D(1,1)=D(1SET,1) 00065 00066 84 NP=NP+1 00067 LIST THE GUTPUT 00068 00069 00070 CALL LISTP(B,D,INAX,JMAX,IGEO,ITERM,IDECS,IDECL,NGEO,IDEINC, 00071 1 ICOUL, JRUW, ICUS, TIME) 00072 00073 C CHANGING THE ARRAY FOR THE NEXT TIME STEP. 00074 00075 DO 90 I=1, IMAX DO 90 J=1, JMAX 00076 00077 TENPERB(I/J) 00076 TEMPU=D(I.J) 00079 B(I,J) = A(I,J)00080 A(I,J)=TEMPB D(1,J)=C(1,J) 00081 00082 C(1.J)=TEMPD 00083 90 CONTINUE GO TO 999 00084 00085 RETURN 00086 END COMMON BLOCKS /GEOPH/(+7) IGE0 ITERM IDECS IDECL +3 NGEO +0 +1 +2 IDEINC +5 ICONS +6 /6K1/(+15) JDY +1 SON1 +2 SON2 +3 IDX +0 DT +4 NPUL +5 ISYM +6 ISET +7 IST +10 +13 IFN +11 JST +12 JFN NITER +14 /BK2/(+11) +0 CDN2 CON1 . +1 CON3 +2 PON1 +3 PON₂ +4 PON3 +5 TON1 +10 TON2 +7 TON 3 /BK3/(+11) Ci C2 +2 +3 +0 +1 C3 81 \$2 +4 +5 T1 +6 **T2** +7 **T3** +10 83 SUBPROGRAMS CALLED

LISTP

INTERY

ITER

```
FAULT LN47TN,FO
```

```
SUBROUTINE FAULT (A.B.C.D. INAX, JMAX, PULSE, FC, FY, JINT, IINT,
00001
00002
            1 ICOUL, JROW)
       Casassassassassis ROUTINE FAULT
00003
             THIS SUBROUTINE COMPUTES DISPLACEMENT FIELD FOR THE VERTICAL
00004
       C
             FAULT MODEL IN THE HALF-SPACE.
00005
       C
00006
       Ć--
                 ______
00007
              DIMENSION ICOUL(1), JROS(1)
00008
              DIMENSION A(IMAX, JMAX), B(IMAX, JMAX), C(IMAX, JMAX), D(IMAX, JMAX)
00009
              DIMENSION PULSE(1), FX(5,5), FY(5,5)
00010
              COMMON /GEOPH/IGEO, ITERM, IDECS, IDECL, NGEO, IDEINC, ICONS
00011
              COMMON /BK1/IDX.JDY.SUN1.SUN2.DT.NPUL.ISYM.ISET.IST.IFN.
00012
            1 JST. JFR, NITER
00013
              COMMON /BK2/COM1, CGN2, COM3, PON1, PON2, PON3, TON1, TON2, TON3
              COFMUN /BK3/C1,C2,C3,S1,S2,S3,T1,T2,T3
00014
00015
              COMMON /BN4/DY1, DY2, DY3, CX1, CX2, CX3, SX1, SX2, SX3, TX1, TX2,
00016
            1 TX3, DX1, DX2, DX3
00017
              ID1MX=IMAX
00018
              JDYMY=JMAX
00019
              JNEGA=JINT-2
00020
              JINTN=JINT-1
00021
              JINT1=JINT+1
00022
              JINTP=JINT+2
00023
              IINTP=IINT+2
00024
              11NT1=11NT+1
00025
              IINTH= | INT=1
00026
              INEGA=IINT=2
00027
              TIME=0.0
00028
              NPSI
00029
              TENDEDTARTTER
        999
00030
              TIME=TIME+DT
00031
           CUMPUTATION FOR THE HOMOGENEOUS REGION
00032
        C
00033
        ********************
              CALL ITEF (A, B, C, D, IDINX, JOIMY, CON1, CON2, CON3, 2, IDX, 2, JNEGA)
00034
00035
              CALL ITER(A,b,C,D,1D1MX,JD1MY,TON1,TON2,TUB3,2,INEGA,JIBTP,JDY)
00030
              CALL ITER(A, 8, C, D, IDIMX, JDIMY, CD 11, CON2, CON3, LINTP, IDX, JINTN, JDY)
              CALL ITER(A.B.C.D.IDIMX.JDIMY.CON1.COM2.COM3.IINT1.IINT1.
00037
00038
            1 JINTY, JINTH)
00039
        COMPUTATION FOR THE HORIZONTAL INTERFACE.
00040
        C
00041
        00042
              CALL INTERY(A,B,C,D,COM1,CUM2,COM3,C1,C2,C3,2,IINT,JINTM,
00043
            1 1018X, JDIMY)
              CALL INTERY(A, B, C, D, PON1, PON2, PON3, S1, S2, S3, 2, IINTN, JINT,
00044
00045
             1 IDIAX.JDIMY)
00046
             CALL INTERY (A, B, C, D, TON1, TON2, TON3, T1, T2, T3, 2, INEGA, JINT1,
00047
             1 IDIMX, JUIMY)
00048
        00049
           COMPUTATION FUT THE VERTICAL INTERFACE
        C
        00050
00051
             CALL INTERX(A,B,C,D,PON1,PUN2,PON3,SX2,SX3,SX1,IINT,JINT1,
00052
             1 JDY, IDIMX, JDIMY)
00053
              CALL INTERX(A, B, C, D, TON1, TON2, TON3, TX2, TX3, TX1, IINTN, JINTP,
00054
             1 JDY. IDIMX, JDIMY)
00055
              CALL INTERX(A,B,C,D,CON1,CON2,CON3,CX2,CX3,CX1,IINT1,JINT,
00056
            1 JDY, IDINX, JDIMY)
```

```
00057
      00058
      C COMPUTATION FOR THE CORKER PUINT
00059
      C**********************************
00060
            CABL CURRER(A, B, C, D, IDIMX, JDIMY, IINT, JINT, PON1, PON2, PON3,
00061
          1 DY1, DX2, DX3, DY2, DY3, DX1)
00062
            CALL CURNER(A, B, C, D, IDINX, JDINY, IINTH, JINT1, TON1, TON2, TON3,
00063
          1 T1.TX2.TX3.T2.T3.TX1)
00064
           IF (MP.GT.MPUL) GO TO 77
00065
      ***********************************
      C COMPUTATION FOR THE SOURCE REGION
00066
00067
      ·
83000
           UU 52 1=IST.IFN
00069
           1TEM= [ - 1ST+1
00070
           DO 52 J=JST.JFR
00071
           JTEM=J-JST+1
00072
           B(I,J)=F(I,J)+FX(ITEM,JTEM)*PULSE(NP)
00073
      52
           U(I,J)=D(I,J)+FY(ITEN,JTEM)*PULSE(NP)
00074
           CONTINUE
00075
            GO TO(71,72), ISYM
00076
      00077
      C SYMMETRY CONDITION
      C *********************
00078
00079
      71
            DO 40 J=2, JMAX
00080
            B(1,J)=-B(ISET,J)
00081
      40
            D(1.J)=D(ISET.J)
00082
      ********************
00083
         FREE BOULDARY CONDITION.
      C
00084
      00085
      72
            00 30 1=2.10X
00086
            B(I,1)=P(I,3)+P(I+1,2)-P(I-1,2)
00087
      30
            D(I,1)=D(1,3)+SO(2*(B(I+1,2)-B(I-1,2))
00088
            GO TO(83,84), ISYM
00089
      83
            B(1,1) = -B(ISET,1)
00090
            U(1,1)=U(1SET,1)
00091
      84
            MP=HP+1
00092
      **********************************
00093
      C LIST THE OUTPUT
00094
      00095
            CALL LISTP(B,D,1MAX,JMAX,IGED,1TERM,1DECS,IDECL,NGEO,IDEINC,
00096
          1 ICOUL, JROW, ICONS, TIME)
00097
            IF (TIME GI. TEND) RETURN
00098
           ***********
00099
      C CHANGING THE ARRAY FOR THE MEXT TIME SIEP.
00100
      C **********************
00101
            DO 90 I=1,1MAX
00102
            DU 90 J=1, JMAX
            TEPPB=B(I,J)
00103
00104
            TEMPD=D(I,J)
00105
            B(1,J)=A(1,J)
00106
            A(1,J)=TEMPS
00107
            D(1,J)=C(1,J)
00108
            C(I,J)=TEMPD
      90
00109
            CONTINUE
00110
            GO TO 999
00111
            RETURN
00112
            END
```

```
00001
                          SUBROUTINE INHOMO(A.B.C.D.IIIAX.JMAX.PULSE.FX.FY.ALPA.BETA.DEN.
00002
                       1 JTOP, JBOT, JRIG, LTOTX, JTOTY, ICOUL, JROW)
00003
              Commonwealers SURROUTINE INHUMBERS COMMON CO
00004
                         THIS SUBROUTINE COMPUTERS DISPLACEMENT FIELD CAUSED BY A LOCALIZED
              C
00005
                        INHOMOGENEITY EMBEDDED IN AN ELASTIC HALF-SPACE.
00006
00007
                          DIMENSION ICOUL(1), JROW(1)
0000H
                          DIMENSION A(IMAX,JMAX),B(IMAX,JMAX),C(IMAX,JMAX),D(IMAX,JMAX)
00009
                          DIMERSION ALPA(ITOTX, JTOTY), SETA(ITOTX, JTOTY), DEN(ITOTX, JTOTY)
00010
                          DIMEDSION PULSE(1).FX(5.5),FY(5.5)
00011
                          COMMON /GEOPH/IGFO.11ERM.IDECS.IDECL.NGEO.IDEINC.ICONS
00012
                          COMMON /BN1/IDX.JDY.SON1.SUM2.DT.NPUL.ISYM.ISET.IST.IFN.
00013
                       1 JST.JFH.NITER
                          COMMON /BAZ/COM1.CON2.CON3.PON1.PON2.PON3.TON1.TON2.TON3
00014
00015
                          JECTT=JBOT=1
00010
                          JTOPP=JTOP+1
00017
                           1RIGG=IRIG=1
00018
                          TIME=0.0
00019
                          NP=1
00020
                          TEND=DT*NITER
00021
                          TIME=TIME+DT
00022
              00023
                     COMPUTATION FOR THE HOMOGENEOUS REGION
00024
              ********************************
00025
                          CALL ITER(A,B,C,D,IMAX,JMAX,COM1,COM2,COM3,2,IDX,2,JTOP)
00026
                          CALL ITEP (A.B.C.D. IMAX.JMAX.CON).CO: 2.CO: 3.2.1DX.JBOT.JDY)
00027
              COMPUTATION FOR THE INHOMOGENEOUS REGION.
00028
              C
00029
00030
                          CALL ITERB(4,8,C,0,IMAX,JMAX,ALPA,BETA,DEN,ITOTX,JTOTY,
00031
                       1 2, IRIGG, JICPP, JEDIT)
00032
                           IF(JRIG.GT.1DX) GO TO 789
00033
                           CALL ITER(A, B, C, D, 1MAX, JMAX, CON1, CUN2, CON3,
00034
                       1 1RIG, IDX, JTOPP, JBOTT)
00035
              789
                          CONTINUE
0003b
                         IF(NP.GT.NPUL) GO TO 77
00037
                 ********
00038
                     COMPUTATION FOR THE SOURCE REGION
00639
              C ***************
00040
                         DO 52 I=IS1,1FN
00041
                         ITEM=I=IST+1
00042
                          DO 52 J=JST,JFN
00043
                         JTEM=J-JST+1
00044
                         B(I,J)=B(I,J)+FX(ITEM,JTEM)*PULSE(NP)
00045
              52
                         D(I,J)=D(I,J)+FY(ITEN,JTEN)*PULSE(NP)
00046
              77
                         CUNTIFUE
00047
                           GO TO(71,72), ISYM
00048
              00049
              C . SYMMETRY CONDITION
00050
              00051
              71
                           DO 40 J=2, JhAX
                           B(1,J)==B(ISET,J)
00052
              40
00053
                           D(1,J)=D(1SET,J)
00054
              00055
                     FREE BOUNDARY CONDITION.
00056
              **********************************
```

```
TNHONO
       LN47TN.FOR
                       FORTRAN V.4A(230) /KT
                                               2-0CT-75
                                                               2139
                                                                       PAGE 1-1
00057
       72
              DO 30 I=2.IDX
00058
              B(I,1)=B(I,3)+D(I+1,2)-D(I+1,2)
00059
       30
              D(1,1)=D(1,3)+SON2*(8(1+1,2)-8(1-1,2))
00060
              GO TO(83,84),18Y
00061
       83
              B(1,1)==B(ISET,1)
00062
              U(1,1)=D(ISET,1)
00063
       84
              40=00+1
00664
       C ********************************
00065
       C LIST THE OUTPUT
00066
       00067
              CALL LISTP(B,D,IMAX,JMAX,IGEO,ITERM,IDECS,IDECL,NGEO,IDEINC,
00068
            1 ICOUL, JROV, ICOUS, TIME)
00069
               IF(TIME.GT.TERD) RETURN
00070
       ****************
00071
       C
          CHARGING THE ARRAY FUR THE WEXT TIME STEP.
00072
       ********************************
00073
              DO 90 Im1, IMAX
60074
              DO 90 J=1.JMAX
00075
              TEMPB=B(I,J)
00076
              TEMPD=D(I.J)
00077
              (U,1)A=(U,1)8
              A(I,J)=TEMPB
00078
              D(1,J)=C(1,J)
00079
00080
              C(1,J)=TEMPD
00081
       90
              COUTINUE
00082
              GO TO 999
00083
              RETURN
00084
              END
COMBON BLOCKS
/GEOPH/(+7)
1GEO
       +0
               ITERM
                       +1
                               IDECS
                                       +2
                                               IDECL
                                                       +3
                                                               NGEO
                        +6
IDE18C
       +5
               1CONS
/BK1/(+15)
       +0
                       +1
IDX
               JDY
                               SON1
                                       +2
                                               SON 2
                                                       +3
DT
        +4
               NPUL
                        +5
                               1SYM
                                       +6
                                               ISET
                                                       +7
                                                               1ST
                                                                       +10
                                       +13
IFN
               JST
                        +12
                               JFN
                                               NITER
                                                       +14
        +11
/BK2/(+11)
CONI
       +0
               CON2
                        +1
CONS
        +2
               PON1
                               PON2
                                               PON3
                                                               TON1
                       +3
                                       +4
                                                       +5
                                                                       +6
                        +10
TON2
        +7
               TON3
SUBPROGRAMS CALLED
ITER
       LISTP
               ITERH
SCALARS AND ARRAYS ( *** NO EXPLICIT DEFINITION - ** NOT REFERENCED )
 .IO013 1
                                                .10010 4
                                                                      5
                                                                               *JTOP
                                                                                       ۸
                 .10012 2
                                 .10011 3
                                                               *IRIGG
                 .10027 10
                                                                                .10025 14
*ITEM
                                ALPA
                                       `11
                                                10026 12
                                                                BETA
                                                                       13
       7
 .10024 15
                                                                .10021 21
                 .10023 16
                                                .10022 20
                               *ITUTX
                                      17
                                                                               XAML*
                                                                                       22
                               *TEMPB 25
 .10020 23
                       24
                                                ICUUL 26
                                                                .I0033 27
                                                                                JROW.
                                                                                       30
 .10032 31
                                .10030 33
                                                                       35
                 .I0031 32
                                               *IRIG
                                                       34
                                                               #J
                                                                                PULSE
                                                                                       36
```

```
00001
                                  SUBROUTINE ITER(A, B, C, D, IX, IY, CON1, CON2, CON3, I1, I2, J1, J2)
00002
                   C-
                                ----SUBROUTINE ITERASSES
00003
                   C
                                  THIS SUBROUTINE COMPUTERS DISPLACEMENT FIELD FOR A HOMOGENEOUS
00004
                   C
                                  REGION BY FINITE DIFFERENCE SCHEME.
00005
                                  ARGUMENT DEFINITIONS.
                   C
00006
                   C
                                         A: HURIZUNTAL DISPLACEMENT AT (M)=TH TIME STEP
                                         B: HURIZONTAL DISPLACEMENT AT (M+1) OR (M-1)-TH TIME STEP.
00007
                   C
00008
                   C
                                         C: VERTICAL DISPLACEMENT AT (M)-TH TIME STEP.
00009
                   C
                                         D: VERTICAL DISPLACEMENT AT (M+1) OR (M=1)-TH TIME STEP.
00010
                                         CON1, CON2, CON3: CONSTANT TERM FOR A HOMOGENEOUS REGION.
00011
00012
                                    DIMENSION A(IX, IY), B(IX, IY), C(IX, IY), D(IX, IY)
00013
                                  DU 70 1=11,12
00014
                                    1P=I+1
00015
                                   IN=1-1
00016
                                    DO 70 J=J1,J2
00017
                                     JP=J+1
00018
                                    Jト=J=1
                                  B(I,J)=A(I,J)+A(I,J)+B(I,J)+B(I,J)+B(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+A(I,J)+
00019
00020
                                1 CU82*(C(IP,UP)=C(IN,UP)=C(IP,UN)+C(IN,UN))+COM3*(A(I,UP)=A(I,U)=
00021
                                2 A(I,J)+A(I,JN))
00022
                                  D(I,J)=C(I,J)+C(I,J)+C(I,J)+CON1*(C(I,JP)=C(I,J)+C(I,J)+C(I,JN))+
                                1 COM2*(A(IP,JP)=A(ID,JP)=A(IP,JN)+A(IH,JN))+COM3*(C(IP,J)=C(I,J)=
00023
00024
                                2 C(I,J)+C(IN,J))
00025
                    70
                                    CONTINUE
                                  RETURN
00026
00027
                                  END
SUBPROGRAMS CALLED
SCALARS AND ARRAYS [ "*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED 1
                                                                                                                                                                 .10010 5
*JP
                                          .10013 2
                                                                                  .10012 3
                                                                                                                         .10011 4
                                                                                                                                                                                                       В
                                                                                                                                                                                                                         6
                                                                                                                                                                                                                         14
                                                                                                                                                              *CON3
                                                                                                                                                                                  13
*J2
                    7
                                        *IP
                                                           10
                                                                               #JN
                                                                                                   11
                                                                                                                       *J1
                                                                                                                                          12
                                                                                                                                                                                                      *J
                    15
                                                           16
                                                                                  .50001 17
                                                                                                                                                              *CON2
                                                                                                                                                                                                                         22
  D
                                         A
                                                                                                                         .S0000 20
                                                                                                                                                                                  21
                                                                                                                                                                                                     *12
                                                                                  .10007 25
                                                                                                                                                                 .10005 27
                                                                                                                                                                                                        .10004 30
#IN
                                         .10003 32
C
                                                                                                                         .10006 26
                    23
                                        #IY
                                                                                  .10002 33
*CON1
                    31
                                                                                                                         .10001 34
                                                                                                                                                                                  35
                                                                                                                                                              *11
                                                                                                                                                                                                     *1'
                                                                                                                                                                                                                         36
   .10000 37
                                                                                                   41
                                                                                                                                                                 .I0016 43
                                                                                                                                                                                                        .I0015 44
                                                                               *IX
                                                                                                                         .I0017 42
  .10014 45
TEMPURARIES
  .ITE16 46
```

2139

2-UCT-75

PAGE 1

FORTRAN V.4A(230) /KI

ITER

ITER

[NO ERRORS DETECTED]

LN47TN.FOR

```
SUBROUTINE ITERH(A, B, C, D, IMAX, JMAX, ALPA, BETA, DEN, ITOTX.
00001
00002
              1 JT01Y, 11, 12, J1, J2)
00003
             mananananaSUPROUTIFE ITERHanananananananananan
00004
        Č
               THIS SUBROUTINE COMPUTES DISPLACEMENT FIELD FOR AN INHOMOGENEOUS
00005
        C
               REGIOD BY FINITE DIFFERENCE SCHEME.
00006
        C
               ARGUMENT DEFINITIONS:
        Ċ
00007
                   ALPA, BETA: LAME CONSTANTS.
80000
        C
                   DEN: DENSITY.
00009
        Č
                  *ALSO SEE SUBROUTINE ITER FOR DEFINITIONS.
00010
        C
00011
                DIMENSION A(IMAX, JNAX), B(IMAX, JMAX), C(IMAX, JMAX), D(IMAX, JMAX)
                DIMENSION ALPA(ITOTX, JTOTY), BETA(ITOTX, JTOTY), DEN(ITOTX, JTOTY)
00012
00013
                IH=1
                DO 10 1=11,12
00014
00015
                 IP=I+1
00016
                 1 i. = 1 - 1
00017
                 IH=IH+1
00018
                 IHP=IH+1
00019
                 IHN=IH-1
00020
                 JH=1
00021
                 DO 10 J=J1.J2
00022
                JH=JH+1
00023
                 JP=J+1
00024
                 JN=J-1
00025
                 JHP=JH+1
00026
                 JHX=JH-1
                CONSTEDEN(IH, JH)/4.0
00027
00028
                 CON1=DEN(1H.JH)*PETA(IH.JH)
00029
                 TEMP=DEN(IP,JH) *ALPA(IH,JH)
00030
               COH2=(CUN1+TEMP)/4.0
00031
                 CON3=CON1+CON1+TEMP
00032
                 B(I,J)=A(I,J)+A(I,J)=B(I,J)+CONST*(ALPA(IHP,JH)+BETA(IHP,JH)+
65000
              1 BETA(IPP, JP) = Abpa(Ink, JH) = BETA(IHk, JH) = BETA(IHk, JH))*(A(IP, J) =
00034
                A(IN,J))+CUn3*(A(IP,J)-A(I,J)-A(I,J)+A(In,J))+CUNSI*(ALPA(IHP,JH)
00035
                 -AlpA((HN,JH))*(C(I,JP)-C(1,JH))+CGL2*(C(IP,JP)-C(IN,JP)-C(1P,JN)
00036
                           +C(IN,JM))+CUNI*(A(I,JP)-A(I,J)-A(I,J)+A(I,JN))+
              5 CONST*(BETA(IH, JHP)=bETA(IH, JHN))*(C(IP, J)=C(IN, J)+A(I, JP)=
00037
00038
              6 A(I,JN))
                 D(I_*J)\equiv C(I_*J)+C(I_*J)+D(I_*J)+COSST*(ALPA(IH_*JHP)+BETA(IH_*JHP)+
00039
00040
              1 EETA(1H, Jhp) = ALPA(1H, Jhn) = EETA(1H, Jhn) = BETA(1H, Jhn)) * (C(1, Jp) =
              2 C(1,JN))+CUN3*(C(1,JP)-C(1,J)-C(1,J)+C(1,JN))+CUNST*(ALPA(IH,JHP)
00041
00042
              (NL,91)A-(9L,41)A-(9L,91)A)*SMOO+((L,41)A-(L,91)A)*((HH,H1)A9LA- E
00043
                 +A(IN,JN))+CUN1*(C(IP,J)-C(1,J)-C(1,J)+C(IN,J))+CONST*(
00044
                \text{BETA}(\text{IRP,Jh}) = \text{BETA}(\text{IHF,JH}) + (C(\text{IP,J}) = C(\text{IN,J}) + A(\text{I,JP}) = A(\text{I,JN})
00045
         10
                 CONTINUE
00046
                 RETURN
00047
                 END
```

SUBPROGRAMS CALLED

```
SUBROUTINE INTERY (A, B, C, D, CUN1, CON2, CON3, BOUN1, BOUN2, BOUN3,
00001
             1 11.12.J.IDX.IDY)
00002
              ----SUBROUTILE INTERY----
00003
        C
00004
        Ċ
              THIS SUBROUTINE COMPUTES DISPLACEMENT AT HORIZONTAL
00005
              INTERFACES FOR ONE-LAYERED OR VERTICAL FAULT MODEL.
        C
00006
        C
              ARGUMENT DEFINITIONS.
        Č
                 A. B. C. D: SEE SUBFOUTINE ITER.
00007
                 CUN1.CO 12.CO/31 CUASTANT TERM FOR A HOMOGENEOUS REGION.
00008
        C
                 BOUNT, BOUNT, EDUNG: CONSTANT TERM FOR AN INHOMOGENEOUS REGION.
        Č
00009
                 JI VERTICAL INDEX NUMBER FOR THE HORIZUNTAL INTERFACE.
        C
00010
00011
        C-
00012
              DIMENSION A(IDX. IDY). B(IDX. IDY). C(IDX. IDY). D(IDX. IDY)
00013
               1-1-1
               JP=J+1
00014
               DO 10 I=I1,I2
00015
00016
               IN=I-1
00017
               IP=I+1
              B(I,J)=A(I,J)+A(I,J)+B(I,J)+CON1*(A(IP,J)-A(I,J)+A(I,J)+A(IN,J))+
00018
              1 CUN2*(C(IP,JP)-C(IN,JP)-C(IP,JE)+C(IN,JE)+C(IN,JE)+C(N,JE)+C(I,JP)-A(I,J)-
00019
00020
             2 A(I,J)+A(I,Jh))+BUUN1*(C(IP,J)=C(IN,J)+A(I,JP)=A(I,JN))
00021
              D(1,J)=C(1,J)+C(1,J)+C(1,J)+C(1,J)+C(N1*(C(1,JP)+C(1,J)+C(1,J)+C(1,JN))+
00022
              1 COR2*(A(IP,JP)-A(1N,JP)-A(IP,JN)+A(IR,JN))+COR3*(C(IP,J)-C(I,J)-
              2 C(1,J)+C(1M,J))+B0UN2*(C(1,JP)=C(1,JM))+B0UN3*(A(1P,J)=A(1M,J))
00023
00024
        10
               CONTINUE
               RETURN
00025
00026
               END
```

SUBPROGRAMS CALLED

```
SCALARS AND ARRAYS [ *** NO EXPLICIT DEFINITION - "%" NOT REFERENCED ]
```

```
.10010 5
                                     .10012 3
#JP
                   .10013 2
                                                        .10011 4
                                                                                           *IDX
                                                                                                    6
                                    *80UN2 11
*BOUN3
        7
                           10
                                                       *IP
                                                                12
                                                                         *IDY
                                                                                  13
                                                                                           *JN
                                                                                                    14
                   R
                                                                                            .S0000 22
*BOUN1
                  *CON3
                                    *.1
                                             17
                                                                20
                                                                                  21
        15
                           16
                                                        D
                                                        10007 26
                                                                          .10006 27
                                                                                            .10005 30
*C062
         23
                  *I2
                           24
                                    *IN
                                             25
 .10004 31
                  *CON1
                                     .10003 33
                                                                          .I0001 35
                                                                                                    36
                                                        .10002 34
                           32
                                                                                           *I1
                                                        .10017 42
                                                                          .IU016 43
                                                                                            .10015 44
¥ T
        37
                   .10000 40
                                     C
                                             41
 .10014 45
```

TEMPURARIES

.INT16 46 .Q0000 47 .Q0001 50

INTERY [NO ERRORS DETECTED]

```
00001
               SUBROUTINE INTERX(A,B,C,D,CUN1,CON2,CON3,BOUN1,BOUN2,BOUN3,
00002
             1 1.J1.J2.IDX.TUY)
00003
        Coopenson SUBRIUTINE INTERX
00004
              THIS SUPROUTINE COMPUTES DISPLACEMENT FIELD AT VERTICAL
        C
00005
              INTERFACES FOR A VERTICAL FAULT NODEL.
        C
00006
        C
              ARGUMENT DEFINITIONS.
                 CON1, CON2, CON31 CONSTANT TERM FOR A HOMOGENEOUS REGION.
00007
        Ċ
00008
        C
                 I: HORIZONTAL INDEX NUMBER FOR THE VERTICAL INTERFACE.
00003
        Ċ
                 BOUN1.BOUK2.BOUK3: CONSTANT TERM FOR AN INHUMOGENEOUS REGION.
00010
                * ALSO SEE SUBROUTINE INTERY FOR DEFINITIONS.
00011
        C-----
00012
              DIMENSION A(IDX, IDY), B(IDX, IDY), C(IDX, IDY), D(IDX, IDY)
00013
               INEI-1
00014
               IP=I+1
00015
               00 10 J=J1,J2
               JH=J=1
00016
00017
               JP=J+1
00018
              B(I,J)=A(I,J)+A(I,J)=B(I,J)+CON1*(A(IP,J)=A(I,J)-A(I,J)+A(IN,J))+
             1 CDN2*(C(IP,JP)=C(11,JP)=C(IP,JE)+C(IN,JN))+CUN3*(A(I,JP)=A(I,J)=
00019
             2A(I,J))+80UA1*(A(IP,J)=A(IN,J))+B0UA2*(C(I,JP)=C(I,JN))
00020
00021
              P((1,J)=C(1,J)+C(1,J)=P((1,J)+C0n1*(C(1,JP)=C(1,J)=C(1,J)+C(1,JN))+
00022
             1 CON2*(A(1P,JP)=A(1N,UP)=A(1P,JN)+A(1N,UN))+CGB3*(C(1P,U)=C(1,J)=
00023
             2 C(I,J)+C(I*,J))+BOUN3*(C(IP,J)=C(IN,J)+A(I,JP)=A(I,JN))
00024
        10.
               CONTINUE
00025
               RETURN
00026
               END
```

SUBPROGRAMS CALLED

INTERX LN47TN.FOR

```
SCALARS AND ARRAYS [ ** NO EXPLICIT DEFINITION - ** NOT REFERENCED ]
```

≠JP	1	.10013	2	.10012	3	.10011	4	.10010	5	*IDX	6
*BOUN3	7	B	10	*BOUN2	11	*J2	12	*IP	13	*1DY	14
#JN	15	*BOUN1	16	# J1	17	*CDN3	20	*J	21	D	22
A	23	.50000	24	*CON2	25	#IN	26	.10007	27	,10006	30
.10005	31	10004	32	*CON1	33	.10003	34	.10002	35	.10001	36
.10000	37	#I	40	C	41	10017	42	10016	43	.10015	44
10014	45					•			-		

TEMPURARIES

.1NT16 46 .00000 47 .00001 50 .00002 51

INTERX [NO ERRORS DETECTED]

CORNER

[NO ERRORS DETECTED]

```
LN47TH.FOR
                      FORTRAN V.4A(230) /KI 2-0CT-75
00001
              SUBROUTINE GAUSS(F, DT, W, NMAX)
       Communication GAUSS
00002
00003
       C
             THIS SUBROUTINE COMPUTES TIME DEPENDENCE OF SOURCE FUNCTION
00004
       C
             USING GAUSSIAN FUNCTION (BODY FORCE).
00005
       Ċ
             ARGUMENT DEFINITIONS.
       C
                F: SOURCE TIME FUNCTION.
00006
00007
       Ċ
                DT: SAMPLING IMTERVAL OF TIME.
                NMAXI THE LENGTH OF ARRAY F.
80000
00009
                W: PARAMETER DETERMING THE WIDTH UG THE SOURCE FUNCTION.
00010
00011
              DIMENSION F(1)
00012
              TST=w#1.6
              NMAX=IFIX(TST*2.0/DT)+1
00013
00014
              ALPA=2.0/(W#W)
00015
              T==TST-DT
00016
             . DO 10 I=1,NMAX
00017
              T=T+DT
81000
              TT=T*T*ALPA
00019
       10
              r(I)=EXP(=TT)
00020
              KETURN
00021
              END
SUBPROGRAMS CALLED
IFIX.
EXP.
SCALARS AND ARRAYS ( "*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED )
                                                               *TST 5
                                                                               .S0000 6
               *T
                               *ALPA
                                               *DT
                                                       12
               *NMAX
                       10
                               *TT
                                       11
                                                F
*I
TEMPORARIES
               .00000 14
 .GAU16 13
GAUSS [ NO ERRORS DETECTED ]
```

2139

PAGE 1

GAUSS

```
00001
                                          SUBROUTINE SPAC(Y, D, DT, T, NMAX)
00002
                      Comession SUBROUTINE SPACEMENT SPACE
                                       THIS SUBROUTINE CALCULATES THE SPACIAL DEPENDENCE OF SOURCE
00003
                      C
                                       FUNCTION. THE SMALLEST SOURCE REGION IN THIS COMPUTER PROGRAM IS
00004
                      C
00005
                      C
                                       2DX*2DY, WHERE DX AND DY ARE SAMPLING INTERVAL IN SPACIAL DOMAIN.
00006
                                       ARGUMENT DEFINITIONS.
                      C
                                                Y.D: FUNCTION WHICH CAN DETERMINE SPACIAL DEPENDENCE
00007
                      C
                                                             OF SOURCE FUNCTION.
80000
                      C
00009
                                                DT: SAMPLING INTERVAL ( =DX OR DY).
                                                TI PARAMETER WHICH CONTRL THE EXTENT OF THE SOURCE REGION.
00010
                      C
00011
                      C
                                                NMAX: THE LENGTH OF ARRAY Y OR D.
00012
00013
                                          DIMENSION Y(19,D(1)
00014
                                          T2=T*2.0
00015
                                          T3=T*3.0
                                          T4=T+4.0
00016
00017
                                          NMAX=IFIX(T4/DT)+1
                                         A=0.5/(T*T)
00018
00019
                                          X==DT
00020
                                          DO 10 I=1,1:MAX
00021
                                          X = X + DT
                                          IF(X,GT,T) GO TO 21
00022
00023
                                          Y(I)=A*X*X
00024
                                          D(I)=2.0*A*X
00025
                                          GO TO 10
00026
                       21
                                          IF(X,GT,T3) GO TO 22
00027
                                          Y(I) = A*(X*T2)*(X*T2)+1.0
00028
                                          D(I) == 2.0 *A *(X = T2)
00029
                                          GO TO 10
00030
                       22
                                          Y(I) = A * (X = I4) * (X = I4)
00031
                                          D(1)=2.0*A*(X=T4)
00032
                       10
                                          COUTINUE
00033
                                          RETURN
00034
                                          END
SUBPRUGRAMS CALLED
IFIX.
SCALARS AND ARRAYS ( "*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED ]
                                              *DT
                                                                                              Y
                                                                                                                                         #T4
                                                                    2
                                                                                                                                                                                         n
   .50000 7
                                              #X
                                                                    10
                                                                                           *T3
                                                                                                                  11
                                                                                                                                                                12
                                                                                                                                                                                                             13
                                                                                                                                                                                                                                    *T2
                                                                                                                                                                                                                                                           14
                                                                                                                                         # T
                                                                                                                                                                                      *NMAX
TEMPURARIES
```

2-0CT-75

2139

PAGE 1

FORTRAN V.4A(230) /KI

SPAC

.SPA16 15

[NO ERRORS DETECTED]

SPAC

LN47TN.FOR

```
FORTRAN V.4A(230) /KI
LISTP
        LN47TN.FOR
                                                    2-0CT-75
                                                                      2139
                                                                              PAGE 1
00001
                SUBROUTINE LISTP(B.D.IMAX.JMAX.IGEO.ITERM.IDECS.IDECL.NGEO.
00002
              1 IDEING. ICOUL, JROW, ICONS, TIME)
00003
        Communication SUBROUTINE LISTPHENNING
               THIS SUBROUTINE WRITES THE DISPLACEMENT OUTPUT IN LINE PRINTER AND
00004
        Č
00005
        C
               IN A MAGNETIC TAPE.
00006
00007
                DIMENSION B(IMAX, JMAX), D(IMAX, JMAX), ICOUL(1), JROW(1)
00008
                COMMON /INDUT/IN, IOUT, ITAPE
                GO TO(11,12), IGEO
00009
                GO TO(13,14), ITERM
00010
         11
00011
         13
                DO 10 J=IDECS, IDECL, IDEIAC
                WRITE(IOUT, 400) TIME, ICONS, J. B(ICONS, J), D(ICONS, J)
00012
00013
         10
               WRITE(ITAPE, 400) TIME; ICONS, J, B(ICONS, J), D(ICONS, J)
                FORMAT(2X,F10,5,2X,16,2X,16,4X,2E20,8)
00014
         400
00015
00016
         14
                DO 20 I=IDECS.IDECL.IDEINC
00017
                WRITE(IOUT, 400)TIME, I, ICOMS, B(I, ICOMS), D(I, ICOMS)
00018
         20
               WRITE(ITAPE, 400) TIME, I, ICONS, B(I, ICONS), D(I, ICONS)
00019
                RETURN
00020
         12
                TNN=1
00021
                JNN=1
         40
                IT=ICOUL(INN)
00022
00023
                JT=JRUW(INN)
00024
                WRITE(IOUT, 400) TIME, IT, JT, B(IT, JT), D(IT, JT)
00025
               WRITE(ITAPL, 400) TIME, IT, JT, B(IT, JT), D(IT, JT)
                IF (INL.GT.NGEO) RETURN
00026
00027
                INN=INN+1
00028
                GO TO 40
00029
                END
COMMON BLOCKS
/INDUT/(+3)
1 N
                 IOUT
                                   ITAPE
                          41
                                            +2
         +0
SUBPROGRAMS CALLED
SCALARS AND ARRAYS [ "*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED ]
*ICONS
                          2
                                   *IGEO
                                                                              5
                 *IDECL
                                                     *JNN
                                                                      *JMAX
                                                                                                6
                                                                                        A
#IDEINC 7
                  *JT
                          10
                                    ICOUL
                                           11
                                                     JROW
                                                             12
                                                                      *NGEO
                                                                              13
                                                                                       *INN
                                                                                                14
                                                                       $0000 2i
       115
                                                      .50001 20
*J
                                                                                                22
                  *IMAX
                          16
                                            17
                                                                                       *IT
                                    .10006 25
                                                                       .10005 27
                   .10007 24
                                                                                        .10004 30
*TIME
         23
                                                     #IUECS 26
#ITERM
                   .10003 32
                                                      .10001 34
                                                                                        .I0000 36
        31
                                    .10002 33
                                                                      *I
                                                                               35
TEMPURARIES
```

.LIS16 46

[NO ERRORS DETECTED]

LISTP

```
00001
               SUBROUTINE LIST(IMUDE, ALPA1, ALPA2, BETA1, BETA2, DEN1, DEN2, DX, TX, T)
00002
        00003
              THIS SUBROUTINE LIST PARAMETERS OF THE MODEL.
        c
        00004
00005
               COMMON /INOUT/IN. IOUT. ITAPE
               COMMON /BK1/IDX, JDY, SUN1, SUN2, DT, NPUL, ISYM, ISET, IST, IFN.
00006
00007
             1 JST. JFN. MITER
00008
               GO TO (11,12,13), IMODE
00009
        11
               wRITE(10UT, 100)
               FURMAT(//.4X. 'PRESENT MODEL IS ONE-LAYERED HALF-SPACE')
00010
        100
00011
               GO TO 14
00012
               WRITE(IDUT.200)
        200
00013
               FORMAC(//, 4X, 'PRESENT MODEL IS VERTICAL FAULT')
00014
               GU TO 14
               wRITE(10UT, 300)
        13
00015
                FORMAT(//,4x, 'PRESENT MODEL IS LOCALIZED INHOMOGENEITY')
00015
        300
00017
        14
               GO TO(15,16), ISYM
        15
00018
               WRITE(IOUT, 400)
                FORMAT(4X, ITHIS MODEL IS SYMMETRICAL!)
00019
        400
00020
               GO TO 17
               ARITE(IOUT,500)
00021
        16
00022
        500
                FORMAT(4X, 'THIS MODEL IS ASYMMETRICAL')
00023
        17
               IC=(IFN+IS1)/2
00024
               JC=(JST+JFN)/2
00025
               WRITE(IUUT, 600)DT, DX, TX, T, NITER, IC, JC
                                      INCHEMENT=1,F10.5./,
00026
        600
                FOR"AT(///.8X, TIME
00027
             1 8x, 101STANCE INCREMENT=1,F10.5./,
             2 bx, 'SPACIAL SOURCE WIDTH=',F10.5./,
00028
00029
             3 8X, TEMPORAL SOURCE WIDTA=1,F10,5,/,
00030
             4 6X, INUMBER OF ITERATION=1,15,/,
             5 EX, CENTER OF SUBRCE IS LOCATED AT(',12,'DX,'12,'DY)')
00031
00032
               wRITE(IOUT, 700) ALPA1, BETA1, DEN1
00033
        700
               FORMAT(///. BX. 'ELASTIC PARAMETERS IN UPPER MEDIUM',/,
             1 8X, LONGITUDINAL VELOSITY=1, F12,5,/,
00034
             2 8X, SHEAR VELOCITY
00035
                                         =1,F12.5,/,
             2 BX, IDEASITY
00036
                                         =1,F12.5)
00037
               GU TO(21,21,22), IMODE
00038
        21
               WRITE(IOUT, 800) ALPA2, BETA2, DEN2
                FORMAT(//, 8X, 'ELASTIC PARAMETERS IN LOWER MEDIUM',/,
00039
        800
00040
             1 8X, LONGITUDINAL VELOSITY=1,F12.5,/,
                                        =1,F12.5,/,
00041
             2 8X, ISHEAR VELOCITY
00042
             2 8X, DENSITY
                                         =1,F12.5)
00043
        22
               WRITE(10UT,900)
               FORMAT(////, 6X, 'TIME', 4X, 'X-INDEX', 3X, 'Y-INDEX', 10X,
00044
        900
00045
             1 'HORIZONIAL', 10X, 'VERTICAL', /, 41X, 'DISPLACEMENT', 8X,
00046
             2 'DISPLACEMENT',/)
00047
               RETURN
00048
               END
COMMUN BLUCKS
/INDUT/(+3)
IN
        +0
                IOUT
                         +1
                                 ITAPE
                                         +2
/BK1/(+15)
IDX
                JDY
                         +1
                                 SONI
                                         +2
        +0
```

SELECTED REFERENCES

- Aboudi, Jacob, 1971, Numerical simulation of seismic source: Geophysics, v. 36, p. 810-821.
- Alford, R. M., Kelley, V. R., and Boore, D. M., 1974, Accuracy of finite-difference modeling of the acoustic wave equation: Geophysics, v. 39, p. 834-841.
- Alterman, Z. S., and Aboudi, J., 1970, Source of finite extent, applied force and couple in an elastic half-space: Geophysical Journal, v. 21, p. 47-64.
- Alterman, Z. S., and Karal, F. C., 1969, Propagation of elastic waves in layered media by finite difference methods: Seismol. Soc. America Bull., v. 58, p. 367-398.
- Balch, A. H., and Smolka, F. R., 1970, Plane and spherical transient Voigt waves: Geophysics, v. 35, p. 745-761.
- Bath, Markus, 1968, Mathematical aspects of seismology: Amsterdam. Elsevier.
- Collins, Francis, 1960, Plane compressional Voigt waves: Geophysics, v. 25, p. 483-504.
- Ewing, W. M., Jardetzky, W. S., and Press, Frank, 1957, Elastic waves in layered media: New York, McGraw-Hill.
- Haskell, N. A., 1953, The dispersion of surface waves in multi-layered media: Seismol. Soc. America Bull., v. 43, p. 17-34.
- Horton, C. N., 1959, A loss mechanism for the Pierre shale: Geophysics, v. 24, p. 667-680.
- Munasinghe, M., and Farnell, G. W., 1973, Finite difference analysis of Rayleigh wave scattering at vertical discontinuities: Jour. Geophys. Research, v. 78, p. 2454-2466.
- Peterson, R. A., Fillippone, W. R., and Coker, F. B., 1955, The synthesis of seismogram from well log data: Geophysics, v. 20, p. 516-538.
- Richtmyer, R. D., and Morton, K. W., 1967, Difference methods for initial-value problems, New York, Interscience.

- Sherwood, J. W. C., and Trorey, A. W., 1965, Minimum-phase and related properties of the response of a horizontally stratified obsorptive earth to plane acoustic waves: Geophysics, v. 30, p. 191-197.
- Trorey, A. W., 1962, Theoretical seismogram with frequency and depth dependent absorption: Geophysics, v. 27, p. 766-785.
- White, J. E., 1965, Seismic waves; radiation, transmission, and attenuation: New York, McGraw-Hill.
- Weunschel, P. C., 1960, Seismogram synthesis including multiples and transmission parameters: Geophysics, v. 25, p. 106-129.